
Windows Sockets 2
Application Programming

Interface

An Interface for Transparent Network Programming
Under Microsoft WindowsTM

Revision 2.0
Dec 8, 1994

Winsock 2

Preliminary
Subject to Change Without Notice

2

Microsoft, Intel and JSB disclaim all warranties and liability for the
use of this document and the information contained herein, and
assumes no responsibility for any errors which may appear in this
document. Microsoft, Intel and JSB make no warranty or license
regarding the relationship of this document and the information
contained herein to the intellectual property rights of any party.
Microsoft, Intel and JSB make no commitment to update the
information contained herein.

3

Table of Contents

Introduction..

Summary of Additions and Changes..
Support for multiple transports simultaneously..
Shared Sockets...
Overlapped I/O and Event Objects..
Socket Groups..
Enhanced Functionality During Connection Setup...
Quality of Service..
New Socket Option Summary..

New API Functions...
WSAAccept()...
WSAAsyncSelect()..
WSAConnect()...
WSADuplicateSocket()..
WSAEnumProtocols()..
WSAEnumNetworkEvents()..
WSAEventSelect()...
WSARecv()..
WSARecvfrom()..
WSASend()...
WSASendto()...
WSASocket()..
WSACreateEvent...
WSACloseEvent...
WSAWaitForMultipleEvents...
WSASetEvent...
WSAResetEvent...
WSAGetOverlappedResult..
WSAGetQoSByName..

Winsock 2.0 Header File - Winsock2.h..

4

Introduction
The pages which follow contain new APIs that are proposed for Winsock 2. Except where indicated,
they are applicable to both 16 and 32 bit programming environments. These APIs were developed jointly
by the Generic API Extensions and Operating Framework functionality groups from within the Winsock
Forum.

Summary of Additions and Changes
The paragraphs which follow summarize the major changes and additions in going from Winsock 1.1 to
Winsock 2.
Support for multiple transports simultaneously
Winsock 1.1 implementations are all vendor-specific since no standard interface has been defined for use
between Winsock.DLL and protocol stacks. Winsock 2 changes the model by defining such an interface
and allowing multiple stacks from multiple vendors to be accessed simultaneously from a single
Winsock2 DLL. Furthermore, Winsock 2 support is not limited to TCP/IP protocol stacks as is the case
for Winsock 1.1.

This is accomplished by creating a formal Service Provider Interface Specification, which exists under
separate cover. Included in the SPI document is a definition for a set of functions provided in the
Winsock2 DLL for the use of transport providers in installing their transport and making them available
via Winsock. This obviates the need for providers to deal with the differences between INI files in
Windows 3 environments and the registry in Windows 95 and NT.

Some of the elements in the WSAData structure (obtained via a call to WSAStartup()) should now be
ignored since they no longer apply to a single vendor's stack. These include: iMaxSockets, iMaxUdpDg,
and lpVendorInfo. Two new socket options are introduced to supply provider-specific information:
SO_MAX_MSG_SIZE (replaces the iMaxUdpDg element) and PVD_CONFIG (allows any other
provider-specific configuration to occur).

An application may use WSAEnumProtocols() to discover which transport providers are present and
learn information about each as contained in an associated PROTOCOL_INFO struct. Whereas in
Winsock 1 there was a small number of well-known socket types and protocol identifiers, the focus will
shift for Winsock 2. The existing socket type and protocol identifiers will be retained for compatibility
reasons, but many new address family, socket type and protocol values are expected to appear which are
unique but not necessarily well known. Applications that desire to be independent of particular protocols
are encouraged to examine the PROTOCOL_INFO structure associated with each available transport and
select those that offer the required communications attributes (e.g. message vs. byte-stream oriented,
reliable vs. unreliable, etc.). Having found one or more transports with suitable attributes, it really won’t
matter which particular socket type or protocol values are associated with the transport. These values are
simply copied out of the PROTOCOL_INFO struct and used as parameters to the socket() or
WSASocket() function.

It is anticipated that a clearinghouse will be established for obtaining unique identifiers for new address
families, socket types and protocols. FTP and Web servers will supply current identifier/value mappings,
and email can be used to obtain new ones.

Restrictions on select()
In Winsock 2 the FD_SET supplied to the select() function will be constrained to contain sockets from a
single service provider. This restriction allows the Win32 implementations of Winsock2.DLL to be much
simpler than they would otherwise be since all blocking behavior may now be implemented by the
transport provider directly. (Unfortunately not true for Win16!) This does not in any way restrict an
application from having multiple sockets open using multiple providers. When non-blocking operations
are preferred the WSAAsyncSelect() function is the solution. Since it takes a socket handle as an input
parameter, it doesn’t matter what provider is associated with the socket.

5

When an application needs to block waiting for I/O to occur on a set of sockets which spans multiple
providers, the recommended solution is to use WSAWaitForMultipleEvents(). The application may also
which to take advantage of the WSAEventSelect() function which also allows the FD_XXX network
events to be associated with an event object and handled from within the event object paradigm.

Shared Sockets
WSADuplicateSocket() is introduced to enable socket sharing by creating a shared socket for a target
task (which could be the same task) with respect to a local, existing socket. The new shared socket thus
created is only meaningful within the context of the target task. This mechanism is designed to be
appropriate for both single-threaded version of Windows (such as Windows 3.1) and preemptive
multithreaded versions of Windows (such as Windows 95 and NT).

Overlapped I/O and Event Objects
Winsock 2 introduces overlapped (or asynchronous) I/O and requires that all transport providers support
this capability. Overlapped I/O can be performed only on sockets that were created via the WSASocket()
function with the WSA_FLAG_OVERLAPPED flag set, and will follow the model established in Win32.

 For receiving, application's use WSARecv() or WSARecvFrom() to supply buffers into which data is to
be received prior to the time when data is received by the network. As data arrives, the network places it
directly into the application's buffer and thereby avoids the copy operation that would otherwise occur at
the time the recv() or recvfrom() function is invoked. Note that if data arrives when no receive buffers
have been posted by the application, the network resorts to the familiar synchronous style of operation
where the incoming data is buffered internally until such time as the application issues a receive call and
thereby supplies a buffer into which the data may be copied. An exception to this would be if the
application used setsockopt() to set the size of the receive buffer to zero. In this instance, data received
without a receive buffer being posted would be lost.

On the sending side, applications use WSASend() or WSASendTo() to supply pointers to filled buffers
and then agree to not disturb the buffers in any way until such time as the network has consumed the
buffer's contents.

Overlapped send and receive calls return immediately and the network provides a subsequent indication
when send buffers have been consumed or when receive buffers are full. Also, both send and receive
operations can be overlapped. The receive functions may be invoked multiple times to post receive
buffers in preparation for incoming data, and the send functions may be invoked multiple times to queue
up multiple buffers to be sent. Note that while the application can rely upon a series of overlapped send
buffers being sent in the order supplied, the corresponding completion indications may occur in a
different order. Likewise, on the receiving side, buffers will be filled in the order they are supplied but
the completion indications may occur in a different order.

Event Objects as an Underpinning for Completion Indication
Introducing overlapped I/O requires a mechanism for applications to unambiguously associate send and
receive requests with their subsequent completion indications. The selected mechanism utilizes event
objects which are modeled after Win32 events. Applications use WSACreateEvent () to obtain an async
event handle which may then be supplied as a required parameter to the asynchronous versions of send
and receive calls (WSASend(), WSASendTo(), WSARecv(), WSARecvFrom()). The event object, which
is cleared when first created, is set by the network when the associated overlapped I/O operation has
completed (either successfully or with errors).

In order to provide applications with appropriate levels of flexibility, several options are available for
receiving completion indications. These include: waiting on (i.e. blocking on) event objects, polling
event objects, and callbacks (for 16 bit environments) or asynchronous procedure calls (for 32 bit
environments).

6

Blocking and waiting for Completion Indication -
Applications may also choose to block while waiting for one or more async events to become set using
WSAWaitForMultipleEvents(). In Win16 implementations, this will utilize a blocking hook as is
currently provided for standard blocking socket operations. In Win32 implementations, the process or
thread will be truly blocked. Since Winsock 2 event objects are implemented as Win32 events, the native
Win32 function WaitForMultipleObjects() may also be used for this purpose. This is especially useful if
the thread needs to wait on both socket and non-socket events.

Polling for Completion Indication -
Applications which prefer not to block may use WSAGetOverlappedResults() to poll for the completion
status associated with any particular event object. This function will indicate both whether or not the
overlapped operation has completed, and error status when completion has occurred.

Using callbacks or APCs -
The functions used to initiate overlapped I/O (WSASend, WSASendTo, WSARecv, WSARecvFrom)
all take lpCompletionRoutine as an input parameter. This is a pointer to an application-specified function
that is called when the overlapped I/O operation has completed (successfully or otherwise). In Win16
environments, callback functions may be invoked in what is essentially interrupt context. Consequently,
applications have a very limited set of Windows and runtime library function calls that can be safely
made. Network transports will allow send and receive operations to be called within the context of the
callback function.

In Windows 95 and NT, the completion function will occur as an asynchronous procedure call (APC)
and requires that the thread be in an alertable wait state such as can occur with the function
WSAWaitForMultipleEvents().

Relationship of WSAGetXByY() asynchronous task handles to event objects -
The Winsock 1.1 spec includes a number of asynchronous database access routines known collectively as
the WSAGetxByY functions. The return value for these is referred to as an "asynchronous task handle".
In Winsock 2, these asynchronous task handles are, in fact, event objects. As such they can be waited on
by either using WSAWaitForMultipleEvents() (or in Win32 by using WaitForMultipleObjects()), or
they can be polled with WSAGetOverlappedResults().

Editor’s Note:
This represents an exception to the normal way of doing things in a couple of areas. First, since these
routines also generate a Windows message to indicate completion, the convention of allowing only a
single completion indication mechanism in place at one time is violated. Secondly, while the established
notion has been that applications create event objects and then explicitly associate them with some
indication, this is not followed here since the function invocation causes an event object to come into
existence as a side effect. The application may explicitly destroy the event object after the routine
completes using WSACloseEvent(), or it may allow the Winsock 2 DLL to just recycle the event object
at some future (unspecified) time as is the case for Winsock 1.1's asynchronous task handles.

If we felt that these WSAGetXbyY() routines had a long life ahead of them, we would be a lot more
bothered by these inconsistencies than we are. But we hope that their use is soon superseded by the much
more capable Winsock 2 name resolution routines. This being the case, we prefer to note but ignore the
inconsistencies pointed out above.

Socket Groups
Winsock 2 introduces the notion of a socket group as a means for an application (or cooperating set of
applications) to indicate to an underlying service provider that a particular set of sockets are related and

7

that the group thus formed has certain attributes. Group attributes include relative priorities of the
individual sockets within the group and a group quality of service specification.

Applications needing to exchange multimedia streams over the network are benefited by being able to
establish a specific relationship among the set of sockets being utilized. As a minimum this might
include a hint to the service provider about the relative priorities of the media streams being carried. For
example, a conferencing application would want to have the socket used for carrying the audio stream be
given higher priority than that of the socket used for the video stream. Furthermore, there are transport
providers (e.g. digital telephony and ATM) which can utilize a group quality of service specification to
determine the appropriate characteristics for the underlying call. The sockets within this group would
then be multiplexed in the usual manner over this call. By allowing the application to identify the
sockets that make up a group and to specify the required group attributes, such service providers can
operate with maximum effectiveness.

WSAConnect () and WSAAccept () are two new functions used to explicitly create and/or join a socket
group coincident with establishing or accepting a socket connection. Socket group IDs can be retrieved
by using getsockopt() with option SO_GROUP_ID. Relative priority can be accessed by using
get/setsockopt() with option SO_GROUP_PRIORITY.

Enhanced Functionality During Connection Setup
WSAAccept () allows an application to obtain caller information before deciding whether or not to
accept an incoming connection request. This is done via a callout to an application-supplied condition
function.
User-to-user data may be specified in WSAConnect () and/or the condition function of WSAAccept () to
be transferred to the peer during connection establishment, provided this feature is supported by the
service provider.

Quality of Service
The basic QOS mechanism in Winsock 2 descends from the flow specification (or "flow spec") as
described by Craig Partridge in RFC 1363, dated September 1992. A brief overview of this concept is as
follows:

 Flow specs describe a set of characteristics about a proposed connection-oriented, unidirectional flow
through the network. An application may associate a pair of flow specs with a socket at the time a
connection request is made. Flow specs indicate parametrically what level of service is required and also
stipulate whether the application is willing to be flexible if the requested level of service is not available.
After a connection is established, the application may retrieve the flow specs associated with the socket
and examine the contents to discover the level of service that the network is willing and/or able to
provide. If the service provided is not acceptable, the application may close the socket and take whatever
action is appropriate (e.g. scale back and ask for a lower quality of service, try again later, notify the user
and exit, etc.)

Even after a flow is established, conditions in the network may change resulting in a reduction (or
increase) in the available service level. A notification mechanism is included which utilizes the usual
Winsock 2 notification techniques to indicate to the application that QOS levels have changed. The app
should again retrieve the corresponding flow specs and examine them in order to discover what aspect of
the service level has changed.

The flow specs proposed for Winsock 2 divide QOS characteristics into the following general areas:

1. Network bandwidth utilization - The manner in which the application's traffic will be injected into
the network. This includes specifications for average bandwidth utilization, peak bandwidth, and
maximum burst duration.

8

2. Latency - Upper limits on the amount of delay and delay variation that are acceptable.

3. Level of service guarantee - Whether or not an absolute guarantee is required as opposed to best
effort. Note that providers which have no feasible way to provide the level of service requested are
expected to fail the connection attempt.

4. Cost - This is a place holder for a future time when a meaningful cost metric can be determined.

5. Provider-specific parameters - The flow spec itself can be extended in ways that are particular to
specific providers, and the assumed provider can be identified.

An application indicates its desire for a non-default flow spec at the time a connection request is made
(see WSAConnect () and WSAAccept()). Since establishing a flow spec'd connection is likely to
involve cooperation and/or negotiation between intermediate routers and hosts, the results of a flow spec
request cannot be determined until after the connection operation is fully completed. After this time, the
application may use getsockopt() to retrieve the resulting flow spec structure so that it can determine
what the network was willing and/or able to supply.

The Flow Spec Structures
The Winsock 2 flow spec structure is defined in Winsock2.h and is reproduced here.

typedef enum
{

GuaranteedService,
BestEffortService

} GUARANTEE;
typedef struct _flowparams
{

int64 AverageBandwith;// In Bytes/sec
int64 PeakBandwidth; // In Bytes/sec
int64 BurstLength; // In microseconds
int64 Latency; // In microseconds
int64 DelayVariation;// In microseconds
GUARANTEE levelOfGuarantee;// Guaranteed or

// Best Effort
int32 CostOfCall; // Reserved for future

// use, must be set to 0
int32 SizePSP; // Length of provider

// specific parameters
 UCHAR ProviderSpecificParams[1];// provider specific

// parameters
} FLOWPARAMS;
typedef struct _QualityOfService
{
 FLOWPARAMS ForwardFP; // Caller(Initiator) to callee

FLOWPARAMS BackwardFP; // Callee to caller
} QOS, FAR * LPQOS;

Default Values
A default flow spec is associated with each eligible socket at the time it is created. Field values for this
default flow spec are indicated below. In all cases these values indicate that no particular flow
characteristics are being requested from the network. Applications only need to modify values those
fields which they are interested in, but must be aware that there exists some coupling between fields.

AverageBandwidth = 0, not specified
PeakBandwidth = 0, not specified
BurstLength = 0, not specified
Latency = 0, not specified
DelayVariation = 0, not specified

9

LevelOfGuarantee = BEST_EFFORT
CostOfCall = 0, reserved for future use
ProviderSpecificParams = 0, none supplied

New Socket Option Summary
The new socket options proposed for Winsock2 are summarized in the following table.

Value Type Meaning Default Note
SO_MAX_MSG_SIZE int Maximum size of a message

for message-oriented socket
types. Has no meaning for
stream-oriented sockets.

Implementation
dependent

get
only

SO_FLOWSPEC char FAR * The flow spec of this socket. NULL get
only

SO_GROUP_ID GROUP The identifier of the group to
which this socket belongs.

NULL get
only

SO_GROUP_FLOWSPEC char FAR * The flow spec of the socket
group to which this socket
belongs.

NULL get
only

SO_GROUP_PRIORITY int The relative priority for
sockets that are part of a socket
group.

0

SO_PROTOCOL_INFO struct
PROTOCOL_
INFO

Description of protocol info for
protocol that is bound to this
socket.

protocol dependent get
only

PVD_CONFIG char FAR * An opaque data structure
object containing configuration
information of the service
provider.

Implementation
dependent

WSAAccept() 10

New API Functions

WSAAccept()
Description Conditionally accept a connection based on the return value of a condition function, and

optionally create and/or join a socket group.

 #include <winsock2.h>

 SOCKET WSAAPI WSAAccept (SOCKET s, struct sockaddr FAR * addr, int
FAR * addrlen, LPCONDITIONPROC lpfnCondition, DWORD dwCallbackData);

s A descriptor identifying a socket which is listening for connections
after a listen().

addr An optional pointer to a buffer which receives the address of the
connecting entity, as known to the communications layer. The exact
format of the addr argument is determined by the address family
established when the socket was created.

addrlen An optional pointer to an integer which contains the length of the
address addr.

lpfnCondition The procedure instance address of the optional, application-supplied
condition function which will make an accept/reject decision based on
the caller information passed in as parameters, and optionally create
and/or join a socket group by assigning an appropriate value to the
result parameter g of this function.

dwCallbackData The callback data passed back to the application as a condition
function parameter. This parameter is not interpreted by Winsock.

Remarks This routine extracts the first connection on the queue of pending connections on s, and
checks it against the condition function, provided the condition function is specified
(i.e., not NULL). If the condition function returns CF_ACCEPT, this routine creates a
new socket with the same properties as s and returns a handle to the new socket, and
then optionally creates and/or joins a socket group based on the value of the result
parameter g in the condition function. If the condition function returns CF_REJECT,
this routine rejects the connection request. The condition function runs in the same
thread as this routine does, and should return as soon as possible. If the decision cannot
be made immediately, the condition function should return CF_DEFER to indicate that
no decision has been made, and no action about this connection request should be taken
by the service provider. When the application is ready to take action on the connection
request, it may invoke WSAAccept() again and return either CF_ACCEPT or
CF_REJECT as a return value from the condition function.

For synchronous sockets which remain in the (default) blocking mode, if no pending
connections are present on the queue, WSAAccept() blocks the caller until a
connection is present. For synchronous sockets in a non-blocking mode or for
overlapped sockets, if this function is called when no pending connections are present
on the queue, WSAAccept() returns an error as described below. The accepted socket
may not be used to accept more connections. The original socket remains open.

The argument addr is a result parameter that is filled in with the address of the
connecting entity, as known to the communications layer. The exact format of the addr

WSAAccept() 11

parameter is determined by the address family in which the communication is
occurring. The addrlen is a value-result parameter; it should initially contain the
amount of space pointed to by addr. On return, it will contain the actual length (in
bytes) of the address returned. This call is used with connection-oriented socket types
such as SOCK_STREAM. If addr and/or addrlen are equal to NULL, then no
information about the remote address of the accepted socket is returned. . Otherwise,
these two parameters will be filled in regardless of whether the condition function is
specified or what it returns.

The prototype of the condition function is as follows:

int PASCAL FAR ConditionFunc(
const struct sockaddr FAR * CallerName,
int CallerNamelen,
LPWSABUF lpCallerData,
LPQOS lpCallerSFlowspec,
const struct sockaddr FAR * Calleename,
int CalleeNamelen,
LPWSABUF lpCalleeData,
GROUP FAR * g,
DWORD dwCallbackData);

{How about group QOS? Let’s leave it out for now since:
 1) It adds complexity
 2) We aren’t sure we need it
 3) It isn’t for sure that group info comes across the wire}

LPWSABUF and LPQOS are defined in winsock2.h as follows:

typedef struct _WSABUF {
int len; // the length of the buffer
char FAR * buf; // the pointer to the buffer

} WSABUF, FAR * LPWSABUF;

typedef enum
{

GuaranteedService,
BestEffortService

} GUARANTEE;

typedef struct _flowparams
{

int64 AverageBandwith;// In Bytes/sec
 int64 PeakBandwidth; // In Bytes/sec
 int64 BurstLength; // In microseconds

int64 Latency; // In microseconds
int64 DelayVariation; // In microseconds
GUARANTEE levelOfGuarantee;// Guaranteed or

// Best Effort
int32 CostOfCall; // Reserved for future

// use, must be set to 0
int32 ProviderId; // Provider Identifier
int32 SizePSP; // Length of provider

// specific parameters
 UCHARProviderSpecificParams[1];// provider specific

// parameters

WSAAccept() 12

} FLOWPARAMS;

typedef struct _QualityOfService
{
 FLOWPARAMS ForwardFP; // Caller(Initiator) to callee
 FLOWPARAMS BackwardFP; // Callee to caller
} QOS, FAR * LPQOS;

ConditionFunc is a placeholder for the application-supplied function name. In 16-bit
Windowns environments, it is invoked in the same thread as WSAAccept(), thus no
other Winsock functions can be called except WSAIsBlocking() and
WSACancelBlockingCall(). The actual condition function must reside in a DLL or
application module and be exported in the module definition file. You must use
MakeProcInstance() to get a procedure-instance address for the callback function.

The lpCallerId and lpCallerData are value parameters which contain the address of the
connecting entity and any user data that was sent along with the connection request,
respectively.

lpCallerSFlowspec contains two blocks of memory containing the flow specs for socket
s, one for each direction, specified by the caller. The forward or backward QOS values
will be set to NULL as appropriate for any unidirectional sockets.. The first part of
each memory block is struct FLOWSPEC, optionally followed by any service provider
specific portion. Thus, lpSFlowspec->Flen and lpSFlowspec->Blen must be larger than
or equal to the size of struct FLOWSPEC. A NULL value for lpSFlowspec indicates no
caller supplied flow spec.

The lpCalleeId is a value parameter which contains the local address of the connected
entity. The lpCalleeData is a result parameter used by the condition function to supply
user data back to the connecting entity. lpCalleeData->len initially contains the length
of the buffer allocated by the service provider and pointed to by lpCalleeData->buf. A
value of zero means passing user data back to the caller is not supported. The condition
function should copy up to lpCalleeData->len bytes of data into lpCalleeData->buf ,
and then update lpCalleeData->len to indicate the actual number of bytes transferred.
If no user data is to be passed back to the caller, the condition function should set
lpCalleeData->len to zero. The format of all address and user data is specific to the
address family to which the socket belongs.

The result parameter g is assigned within the condition function to indicate the
following actions:

if g is an existing socket group id, add s to this group, provided all the
requirements set by this group are met; or

if g = SG_UNCONSTRAINED_GROUP, create an unconstrained socket
group and have s as the first member; or

if g = SG_CONSTRAINED_GROUP, create a constrained socket group and
have s as the first member; or

if g = NULL, no group operation is performed.
For unconstrained groups, any set of sockets may be grouped together as long as they
are supported by a single service provider and are connection-oriented. A constrained
socket group further requires that connections on all grouped sockets be to the same
host. For newly created socket groups, the new group id can be retrieved by using
getsockopt() with option SO_GROUP_ID, if this operation completes successfully.

WSAAccept() 13

Return Value If no error occurs, WSAAccept() returns a value of type SOCKET which is a descriptor
for the accepted socket. Otherwise, a value of INVALID_SOCKET is returned, and a
specific error code may be retrieved by calling WSAGetLastError().

The integer referred to by addrlen initially contains the amount of space pointed to by
addr. On return it will contain the actual length in bytes of the address returned.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAECONNREFUSED The connection request was forcefully rejected as
indicated in the return value of the condition
function (CF_REJECT).

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The addrlen argument is too small or the
lpfnCondition is not part of the user address space.

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall().

WSAEINPROGRESS A blocking Winsock call is in progress.

WSAEINVAL listen() was not invoked prior to WSAAccept(),
parameter g specified in the condition function is
not a valid value, the return value of the condition
function is not a valid one, or any case where the
specified socket is in an invalid state.

WSAEMFILE The queue is non-empty upon entry to
WSAAccept() and there are no socket descriptors
available.

WSAENOBUFS No buffer space is available.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP The referenced socket is not a type that supports
connection-oriented service.

WSATRY_AGAIN The acceptance of the connection request was
deferred as indicated in the return value of the
condition function (CF_DEFER).

WSAEWOULDBLOCK The socket is marked as non-blocking and no
connections are present to be accepted, or the
connection request that was deferred has timed out
or been withdrawn.

See Also accept(), bind(), connect(), getsockopt(), listen(), select(), socket(),
WSAAsyncSelect(), WSAConnect().

WSAAsyncSelect 14

WSAAsyncSelect()
Description Request event notification for a socket.

 #include < winsock2.h >

 int PASCAL FAR WSAAsyncSelect (SOCKET s, HWND hWnd,
unsigned int wMsg, long lEvent);

s A descriptor identifying the socket for which event notification is
required.

hWnd A handle identifying the window which should receive a message
when a network event occurs.

wMsg The message to be received when a network event occurs.

lEvent A bitmask which specifies a combination of network events in which
the application is interested.

Remarks This function is used to request that the Winsock2 DLL should send a message to the
window hWnd whenever it detects any of the network events specified by the lEvent
parameter. The message which should be sent is specified by the wMsg parameter. The
socket for which notification is required is identified by s.

This function automatically sets socket s to non-blocking mode, regardless of the value
of lEvent. See ioctlsocket() about how to set the socket back to blocking mode.

The lEvent parameter is constructed by or'ing any of the values specified in the
following list.

Value Meaning
FD_READ Want to receive notification of readiness for reading
FD_WRITE Want to receive notification of readiness for writing
FD_OOB Want to receive notification of the arrival of out-of-band

data
FD_ACCEPT Want to receive notification of incoming connections
FD_CONNECT Want to receive notification of completed connection
FD_CLOSE Want to receive notification of socket closure
FD_QOS Want to receive notification of socket Quality of Service

(QOS) changes
FD_GROUP_QOS Want to receive notification of socket group Quality of

Service (QOS) changes

Issuing a WSAAsyncSelect() for a socket cancels any previous WSAAsyncSelect() or
WSACallbackSelect() for the same socket. For example, to receive notification for
both reading and writing, the application must call WSAAsyncSelect() with both
FD_READ and FD_WRITE, as follows:

rc = WSAAsyncSelect(s, hWnd, wMsg, FD_READ|FD_WRITE);

It is not possible to specify different messages for different events. The following code
will not work; the second call will cancel the effects of the first, and only FD_WRITE
events will be reported with message wMsg2:

WSAAsyncSelect 15

rc = WSAAsyncSelect(s, hWnd, wMsg1, FD_READ);
rc = WSAAsyncSelect(s, hWnd, wMsg2, FD_WRITE);

To cancel all notification i.e., to indicate that Winsock2 should send no further
messages related to network events on the socket lEvent should be set to zero.

rc = WSAAsyncSelect(s, hWnd, 0, 0);

Although in this instance WSAAsyncSelect() immediately disables event message
posting for the socket, it is possible that messages may be waiting in the application's
message queue. The application must therefore be prepared to receive network event
messages even after cancellation. Closing a socket with closesocket() also cancels
WSAAsyncSelect() message sending, but the same caveat about messages in the queue
prior to the closesocket() still applies.

Since an accept()'ed socket has the same properties as the listening socket used to
accept it, any WSAAsyncSelect() events set for the listening socket apply to the
accepted socket. For example, if a listening socket has WSAAsyncSelect() events
FD_ACCEPT, FD_READ, and FD_WRITE, then any socket accepted on that listening
socket will also have FD_ACCEPT, FD_READ, and FD_WRITE events with the same
wMsg value used for messages. If a different wMsg or events are desired, the
application should call WSAAsyncSelect(), passing the accepted socket and the desired
new information.1

When one of the nominated network events occurs on the specified socket s, the
application's window hWnd receives message wMsg. The wParam argument identifies
the socket on which a network event has occurred. The low word of lParam specifies
the network event that has occurred. The high word of lParam contains any error code.
The error code be any error as defined in Winsock2.h.

The error and event codes may be extracted from the lParam using the macros
WSAGETSELECTERROR and WSAGETSELECTEVENT, defined in Winsock2.h as:

#define WSAGETSELECTERROR(lParam) HIWORD(lParam)
#define WSAGETSELECTEVENT(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the
application.

The possible network event codes which may be returned are as follows:

Value Meaning
FD_READ Socket s ready for reading
FD_WRITE Socket s ready for writing
FD_OOB Out-of-band data ready for reading on socket s.
FD_ACCEPT Socket s ready for accepting a new incoming connection
FD_CONNECT Connection initiated on socket s completed
FD_CLOSE Connection identified by socket s has been closed

1Note that there is a timing window between the accept() call and the call to WSAAsyncSelect() to
change the events or wMsg. An application which desires a different wMsg for the listening and
accept()'ed sockets should ask for only FD_ACCEPT events on the listening socket, then set appropriate
events after the accept(). Since FD_ACCEPT is never sent for a connected socket and FD_READ,
FD_WRITE, FD_OOB, and FD_CLOSE are never sent for listening sockets, this will not impose
difficulties.

WSAAsyncSelect 16

FD_QOS Quality of Service associated with socket s has changed.
FD_GROUP_QOS Quality of Service associated with the socket group to

which s belongs has changed.

Return Value The return value is 0 if the application's declaration of interest in the network event set
was successful. Otherwise the value SOCKET_ERROR is returned, and a specific error
number may be retrieved by calling WSAGetLastError().

Comments Although WSAAsyncSelect() can be called with interest in multiple events, the
application window will receive a single message for each network event.

As in the case of the select() function, WSAAsyncSelect() will frequently be used to
determine when a data transfer operation (send() or recv()) can be issued with the
expectation of immediate success. Nevertheless, a robust application must be prepared
for the possibility that it may receive a message and issue a Winsock2 call which
returns WSAEWOULDBLOCK immediately. For example, the following sequence of
events is possible:

(i) data arrives on socket s; Winsock2 posts WSAAsyncSelect message
(ii) application processes some other message
(iii) while processing, application issues an ioctlsocket(s, FIONREAD...)

and notices that there is data ready to be read
(iv) application issues a recv(s,...) to read the data
(v) application loops to process next message, eventually reaching the

WSAAsyncSelect message indicating that data is ready to read
(vi) application issues recv(s,...), which fails with the error

WSAEWOULDBLOCK.

Other sequences are possible.

TheWinsock2 DLL will not continually flood an application with messages for a
particular network event. Having successfully posted notification of a particular event
to an application window, no further message(s) for that network event will be posted to
the application window until the application makes the function call which implicitly
reenables notification of that network event.

Event Re-enabling function
FD_READ recv() or recvfrom()
FD_WRITE send() or sendto()
FD_OOB recv()
FD_ACCEPT accept() or WSAAcceptEx() unless the error code returned

is WSATRY_AGAIN indicating that the condition function
returned CF_DEFER

FD_CONNECT NONE
FD_CLOSE NONE
FD_QOS getsockopt() with option SO_FLOWSPEC
FD_GROUP_QOS getsockopt() with option SO_GROUP_FLOWSPEC

Any call to the reenabling routine, even one which fails, results in reenabling of
message posting for the relevant event.

For FD_READ, FD_OOB, FD_ACCEPT, FD_QOS and FD_GROUP_QOS events,
message posting is "level-triggered." This means that if the reenabling routine is called
and the relevant event is still valid after the call, a WSAAsyncSelect() message is
posted to the application. This allows an application to be event-driven and not be

WSAAsyncSelect 17

concerned with the amount of data that arrives at any one time. Consider the following
sequence:

(i) network transport stack receives 100 bytes of data on socket s and
causes Winsock2 to post an FD_READ message.

(ii) The application issues recv(s, buffptr, 50, 0) to read 50 bytes.
(iii) another FD_READ message is posted since there is still data to be

read.

With these semantics, an application need not read all available data in response to an
FD_READ message--a single recv() in response to each FD_READ message is
appropriate. If an application issues multiple recv() calls in response to a single
FD_READ, it may receive multiple FD_READ messages. Such an application may
wish to disable FD_READ messages before starting the recv() calls by calling
WSAAsyncSelect() with the FD_READ event not set.

If an event has already happened when the application calls WSAAsyncSelect() or
when the reenabling function is called, then a message is posted as appropriate. All the
events have persistence beyond the occurrence of their respective events. For example,
consider the following sequence: 1) an application calls listen(), 2) a connect request is
received but not yet accepted, 3) the application calls WSAAsyncSelect() specifying
that it wants to receive FD_ACCEPT messages for the socket. Due to the persistence of
events, Winsock2 posts an FD_ACCEPT message immediately.

The FD_WRITE event is handled slightly differently. An FD_WRITE message is
posted when a socket is first connected with connect() or accepted with accept(), and
then after a send() or sendto() fails with WSAEWOULDBLOCK and buffer space
becomes available. Therefore, an application can assume that sends are possible
starting from the first FD_WRITE message and lasting until a send returns
WSAEWOULDBLOCK. After such a failure the application will be notified that sends
are again possible with an FD_WRITE message.

The FD_OOB event is used only when a socket is configured to receive out-of-band
data separately. If the socket is configured to receive out-of-band data in-line, the out-
of-band (expedited) data is treated as normal data and the application should register an
interest in, and will receive, FD_READ events, not FD_OOB events. An application
may set or inspect the way in which out-of-band data is to be handled by using
setsockopt() or getsockopt() for the SO_OOBINLINE option.

The error code in an FD_CLOSE message indicates whether the socket close was
graceful or abortive. If the error code is 0, then the close was graceful; if the error code
is WSAECONNRESET, then the socket's virtual circuit was reset. This only applies to
connection-oriented sockets such as SOCK_STREAM.

The FD_CLOSE message is posted when a close indication is received for the virtual
circuit corresponding to the socket. In TCP terms, this means that the FD_CLOSE is
posted when the connection goes into the FIN WAIT or CLOSE WAIT states. This
results from the remote end performing a shutdown() on the send side or a
closesocket().

Please note your application will receive ONLY an FD_CLOSE message to indicate
closure of a virtual circuit, and only when all the received data has been read if this is a
graceful close. It will NOT receive an FD_READ message to indicate this condition.

The FD_QOS or FD_GROUP_QOS message is posted when any field in the flow spec
associated with socket s or the socket group that s belongs to has changed, respectively.

WSAAsyncSelect 18

Applications might use getsocketopt() with option SO_FLOWSPEC or
SO_GROUP_FLOWSPEC to get the current QOS for socket s or for the socket group s
belongs to, respectively.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL Indicates that one of the specified parameters was
invalid, or the specified socket is in an invalid state.

WSAEINPROGRESS A blocking Winsock2 call is in progress, or the
service provider is still processing a callback
function (see section Error: Reference source not
found).

WSAENOTSOCK The descriptor is not a socket.

Additional error codes may be set when an application window receives a message.
This error code is extracted from the lParam in the reply message using the
WSAGETSELECTERROR macro. Possible error codes for each network event are:
Event: FD_CONNECT
Error Code Meaning
WSAEADDRINUSE The specified address is already in use.

WSAEADDRNOTAVAIL The specified address is not available from the local
machine.

WSAEAFNOSUPPORT Addresses in the specified family cannot be used
with this socket.

WSAECONNREFUSED The attempt to connect was forcefully rejected.

WSAENETUNREACH The network can't be reached from this host at this
time.

WSAENOBUFS No buffer space is available. The socket cannot be
connected.

WSAETIMEDOUT Attempt to connect timed out without establishing a
connection

Event: FD_CLOSE
Error Code Meaning
WSAENETDOWN The network subsystem has failed.

WSAECONNRESET The connection was reset by the remote side.

WSAECONNABORTED The connection was aborted due to timeout or other
failure.

Event: FD_READ
Event: FD_WRITE
Event: FD_OOB
Event: FD_ACCEPT

WSAAsyncSelect 19

Event: FD_QOS
Event: FD_GROUP_QOS
Error Code Meaning
WSAENETDOWN The network subsystem has failed.

See Also select(), WSACallbackSelect()

WSAConnect 20

WSAConnect()
Description Establish a connection to a peer, create and/or join a socket group, and specify needed

quality of service based on the supplied flow spec.

 #include <winsock2.h>

 int WSAAPI WSAConnect (SOCKET s, const struct sockaddr FAR * name, int
namelen, LPWSABUF lpCallerData, LPWSABUF lpCalleeData,
GROUP g, LPQOS lpSFlowspec, LPQOS lpGFlowspec);

s A descriptor identifying an unconnected socket.

name The name of the peer to which the socket is to be connected.

namelen The length of the name.

lpCallerData A pointer to the user data that is to be transferred to the peer during
connection establishment.

lpCalleeData A pointer to the user data that is to be transferred back from the peer
during connection establishment.

g The identifier of the socket group.

lpSFlowspec A pointer to the flow specs for socket s, one for each direction.

lpGFlowspec A pointer to the flow specs for the socket group to be created, one for
each direction, if the value of parameter g is
SG_CONSTRAINED_GROUP. Otherwise, this parameter is ignored.

Remarks This function is used to create a connection to the specified destination, and to perform
a number of other ancillary operations that occur at connect time as well. For
connection-oriented sockets (e.g., type SOCK_STREAM), an active connection is
initiated to the foreign host using name (an address in the name space of the socket; for
a detailed description, please see bind()). When this call completes successfully, the
socket is ready to send/receive data.

For a connectionless socket (e.g., type SOCK_ DGRAM), the operation performed by
WSAConnect() is merely to establish a default destination address so that the socket
may be used on subsequent connection-oriented send and receive operations (send(),
WSASend(), recv(), WSARecv()). On connectionless sockets, exchange of user to
user data is not possible and the corresponding parameters will be silently ignored.

If the socket, s, is unbound, unique values are assigned to the local association by
theWinsock provider, and the socket is marked as bound. Note that if the address field
of the name structure is all zeroes, WSAConnect() will return the error
WSAEADDRNOTAVAIL.

The application is responsible for allocating any memory space pointed to directly or
indirectly by any of the parameters it specifies. LPWSABUF and LPQOS are defined
in winsock2.h as follows:

typedef struct _WSABUF {
int len; // the length of the buffer

WSAConnect 21

char FAR * buf; // the pointer to the buffer
} WSABUF, FAR * LPWSABUF;

typedef enum
{

GuaranteedService,
BestEffortService

} GUARANTEE;

typedef struct _flowparams
{

int64 AverageBandwith;// In Bytes/sec
 int64 PeakBandwidth; // In Bytes/sec
 int64 BurstLength; // In microseconds

int64 Latency; // In microseconds
int64 DelayVariation; // In microseconds
GUARANTEE levelOfGuarantee;// Guaranteed or

// Best Effort
int32 CostOfCall; // Reserved for future

// use, must be set to 0
int32 ProviderId; // Provider Identifier
int32 SizePSP; // Length of provider

// specific parameters
 UCHARProviderSpecificParams[1];// provider specific

// parameters
} FLOWPARAMS;

typedef struct _QualityOfService
{
 FLOWPARAMS ForwardFP; // Caller(Initiator) to callee
 FLOWPARAMS BackwardFP; // Callee to caller
} QOS, FAR * LPQOS;

The lpCallerData is a value parameter which contains any user data that is to be sent
along with the connection request. If lpCallerData is NULL, no user data will be
passed to the peer. The lpCalleeData is a result parameter which will contain any user
data passed back from the peer as part of the connection establishment. lpCalleeData-
>len initially contains the length of the buffer allocated by the application and pointed
to by lpCalleeData->buf. lpCalleeData->len will be set to 0 if no user data has been
passed back. The lpCalleeData information will be valid when the connection
operation is complete. For blocking sockets, this will be when the WSAConnect()
function returns. For non-blocking sockets, this will be after the FD_CONNECT
notification has occurred. If lpCalleeData is NULL, no user data will be passed back.
The exact format of the user data is specific to the address family to which the socket
belongs.

Parameter g is used to indicate the appropriate actions on socket groups:
if g is an existing socket group id, add s to this group, provided all the

requirements set by this group is met; or
if g = SG_UNCONSTRAINED_GROUP, create an unconstrained socket

group and have s as the first member; or
if g = SG_CONSTRAINED_GROUP, create a constrained socket group and

have s as the first member; or
if g = NULL, no operation is performed, and is equivalent to connect().

For unconstrained groups, any set of sockets may be grouped together as long as they
are supported by a single service provider and are connection-oriented. A constrained

WSAConnect 22

socket group requires that connections on all grouped sockets be to the same host. For
newly created socket groups, the new group id can be retrieved by using getsockopt()
with option SO_GROUP_ID, if this operation completes successfully.

lpSFlowspec specifies two blocks of memory containing the flow specs for socket s,
one for each direction. If either the associated transport provider in general or the
specific type of socket in particular cannot honor the QOS request, an error will be
returned as indicated below. The forward or backward QOS values will be ignored,
respectively, for any unidirectional sockets.. The first part of each memory block is
struct FLOWSPEC, optionally followed by any service provider specific portion. Thus,
lpSFlowspec->Flen and lpSFlowspec->Blen must be larger than or equal to the size of
struct FLOWSPEC. A NULL value for lpSFlowspec indicates no application supplied
flow spec.

lpGFlowspec specifies two blocks of memory containing the flow specs for the socket
group to be created, one for each direction, provided that the value of parameter g is
SG_CONSTRAINED_GROUP. Otherwise, these values are ignored. The first part of
each memory block is struct FLOWSPEC, optionally followed by any service provider
specific portion. Thus, lpGFlowspec->Flen and lpGFlowspec->Blen must be larger
than or equal to the size of struct FLOWSPEC. A NULL value for lpGFlowspec
indicates no application-supplied group flow spec.

Comments When connected sockets break (i.e. become closed for whatever reason), they should be
discarded and recreated. It is safest to assume that when things go awry for any reason
on a connected socket, the application must discard and recreate the needed sockets in
order to return to a stable point.

Return Value If no error occurs, WSAConnect() returns 0. Otherwise, it returns SOCKET_ERROR,
and a specific error code may be retrieved by calling WSAGetLastError().

On a blocking socket, the return value indicates success or failure of the connection
attempt.

On a non-blocking socket, if the return value is SOCKET_ERROR an application
should call WSAGetLastError(). If this indicates an error code of
WSAEWOULDBLOCK, then your application can either:

1. Use select() to determine the completion of the connection request by checking if the
socket is writeable, or

2. If your application is using WSAAsyncSelect() to indicate interest in connection
events, then your application will receive an FD_CONNECT notification when the
connect operation is complete.

3. If your applicationis using WSAEventSelect() to indicate interest in connection
events, then the associated event object will be signaled when the connect operation is
complete.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The network subsystem has failed.

WSAEADDRINUSE The specified address is already in use.

WSAConnect 23

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall().

WSAEINPROGRESS A blocking Winsock call is in progress, or the
service provider is still processing a callback
function (see section Error: Reference source not
found).

WSAEADDRNOTAVAIL The specified address is not available from the local
machine.

WSAEAFNOSUPPORT Addresses in the specified family cannot be used
with this socket.

WSAECONNREFUSED The attempt to connect was forcefully rejected.

WSAEDESTADDREQ A destination address is required.

WSAEFAULT The namelen argument is incorrect, the buffer length
for lpCalleeData, lpSFlowspec, and lpGFlowspec
are too small, or the buffer length for lpCallerData
is too large.

WSAEINVAL The parameter g specified in the condition function
is not a valid value, or the parameter s is a listening
socket.

WSAEISCONN The socket is already connected.

WSAEMFILE No more socket descriptors are available.

WSAENETUNREACH The network can't be reached from this host at this
time.

WSAENOBUFS No buffer space is available. The socket cannot be
connected.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP The flow specs specified in lpSFlowspec and
lpGFlowspec cannot be satisfied.

WSAEPROTONOSUPPORT The lpCallerData augment is not supported by the
service provider.

WSAETIMEDOUT Attempt to connect timed out without establishing a
connection

WSAEWOULDBLOCK The socket is marked as non-blocking and the
connection cannot be completed immediately. It is
possible to select() the socket while it is connecting
by select()ing it for writing.

See Also accept(), bind(), connect(), getsockname(), getsockopt(), socket(), select(),
WSAAsyncSelect(), WSAEventSelect().

WSADuplicateSocket 24

WSADuplicateSocket()
Description Create a shared socket for a specified task.

 #include <winsock2.h>

 SOCKET WSAAPI WSADuplicateSocket (SOCKET s, WSATASK hTargetTask);

s Specifies the local socket descriptor.

hTargetTask Specifies the handle of the target task for which the shared socket will
be used.

Remarks This function is used to enable socket sharing by creating a shared socket. Shared
sockets are created in the context of the source task by supplying an existing, local
socket descriptor and a handle to the target task (which could be the same task as the
source task) for which the sharedsocket will be used. The newly created shared socket
descriptor only has meaning within the context of the target task.

To get the handle of the target task, it will generally be necessary to use some form of
interprocess communication (IPC), which is out of the scope of this specification.
Since the created shared socket only has meaning in the target task, the source task
must pass the value of the shared socket descriptor to the target task, again via some
IPC mechanism.

Return Value If no error occurs, WSADuplicateSocket() returns a descriptor referencing the new
socket. Otherwise, a value of INVALID_SOCKET is returned, and a specific error
code may be retrieved by calling WSAGetLastError().

Comments Shared sockets may be used in all places where regular sockets are used and are, in fact,
indistinguishable from them. Shared sockets derived from a common regular socket or
its derivatives share all aspects of the underlying common socket object with the
exception of the notification mechanism. Reference counting is employed to ensure
that the underlying socket object is not closed until the last shared socket is closed.

Since the collection of attributes which comprise a socket object's option set is shared,
setting any socket option on a shared socket may have a global effect. For example, if
one task uses ioctlsocket() on a shared socket to set it into non-blocking mode, this
change is visible to all of the shared sockets that reference the underlying common
socket object.

Each shared socket has an independent notification mechanism which conforms to the
usual Winsock conventions. Thus if two or more tasks are sharing an underlying socket
object and each requests overlapped notification via Windows messages when data is
ready to be read, all such tasks will receive their stipulated message in an unspecified
sequence. The first task to perform a read will get some or all of the available data, the
others will get what's left, if any. In other words, it is completely up to tasks which
share a socket to coordinate their access to the socket.

As an aside, we note that simply invoking the WSADuplicateSocket() function on a
socket s, causes s to become a shared socket which references an underlying socket
object.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSADuplicateSocket 25

WSAENETDOWN The network subsystem has failed.

WSAEINVAL Indicates that one of the specified parameters was
invalid

WSAEINPROGRESS A blocking Winsock call is in progress, or the
service provider is still processing a callback
function (see section Error: Reference source not
found).

WSAEMFILE No more socket descriptors are available.

WSAENOBUFS No buffer space is available. The socket cannot be
created.

WSAENOTSOCK The descriptor is not a socket.

See Also

WSAEnumProtocols 26

WSAEnumProtocols()
Description Retrieve information about available transport protocols.

 #include <winsock2.h>

 int WSAAPI WSAEnumProtocols (LPDWORD lpdwProtocols, LPVOID
lpProtocolBuffer, LPDWORD lpdwBufferLength);

lpdwProtocols a NULL-terminated array of protocol ids. This parameter is optional;
if lpdwProtocols is NULL, information on all available protocols is
returned, otherwise information is retrieved only for those protocols
listed in the array.

lpProtocolBuffer a buffer which is filled with PROTOCOL_INFO structures. See
below for a detailed description of the contents of the
PROTOCOL_INFO structure.

lpdwBufferLength on input, the count of bytes in the lpProtocolBuffer buffer
passed to EnumProtocols(). On output, the minimum buffer size that
can be passed to EnumProtocols() to retrieve all the requested
information. This routine has no ability to enumerate over multiple
calls; the passed-in buffer must be large enough to hold all entries in
order for the routine to succeed. This reduces the complexity of the
API and should not pose a problem because the number of protocols
loaded on a machine is typically small

Remarks This function is used to discover information about the collection of transport protocols
installed on the local machine. The lpdwProtocols parameter can be used as a filter to
constrain the amount of information provided. Normally it will be supplied as a NULL
pointer which will cause the routine to return information on all available transport
protocols.

A PROTOCOL_INFO struct is provided in the buffer pointed to by lpProtocolBuffer for
each requested protocol. If the supplied buffer is not large enough (as indicated by the
input value of lpdwBufferLength), the value pointed to by lpdwBufferLength will be
updated to indicate the required buffer size. The application should then obtain a large
enough buffer and call this function again.

Definitions PROTOCOL_INFO Structure:
DWORD dwServiceFlags1 - a bitmask describing the services provided by the protocol. The

following values are possible:

XP1_CONNECTIONLESS -the Protocol provides connectionless (datagram)
service. If not set, the protocol supports connection-oriented data
transfer.

XP1_GUARANTEED_DELIVERY - the protocol guarantees that all data
sent will reach the intended desitnation.

XP1_GUARANTEED_ORDER - the protocol guarantees that data will only
arrive in the order in which it was sent and that it will not be
duplicated. This characteristic does not necessarily mean that the data
will always be delivered, but that any data that is delivered is
delivered in the order in which it was sent.

WSAEnumProtocols 27

XP1_MESSAGE_ORIENTED - the protocol honors message boundaries, as
opposed to a stream-oriented Protocol where there is no concept of
message boundaries.

XP1_PSEUDO_STREAM - this is a message oriented protocol, but message
boundaries will be ignored for all receives. This is convenient when
an application does not desire message framing to be done by the
protocol.

XP1_GRACEFUL_CLOSE - the protocol supports two-phase (graceful)
close. If not set, only abortive closes are performed.

XP1_EXPEDITED_DATA - the protocol supports expedited (urgent) data.

XP1_CONNECT_DATA - the protocol supports connect data.

XP1_DISCONNECT_DATA - the protocol supports disconnect data.

XP1_SUPPORTS_BROADCAST - the protocol supports a broadcast
mechanism.

XP1_SUPPORTS_MULTICAST - the protocol supports a multicast
mechanism.

XP1_QOS_SUPPORTED - the protocol supports quality of service requests.

XP1_ENCRYPTS - the protocol supports data encryption.

XP1_INTERRUPT - for 16 bit environments (only), the protocol allows
send()/WSASend() and recv()/WSARecv() to be invoked in interrupt
context.

XP1_UNI_SEND - the protocol is unidirectional in the send direction.

XP1_UNI_RECV - the protocol is unidirectional in the recv direction.

DWORD dwServiceFlags2 - reserved for additional protocol attribute definitions

DWORD dwServiceFlags3- reserved for additional protocol attribute definitions

DWORD dwServiceFlags4 - reserved for additional protocol attribute definitions

INT iProviderID- A unique identifier assigned to the underlying transport service provider at
the time it was installed under Winsock 2. This value is useful for instances where more
than one service provider is able to implement a particular protocol. An application may
use the iProviderID value to distinguish between providers that might otherwise be
indistinguishable.

INT iVersion -Protocol version identifier.

WSAEnumProtocols 28

 INT iAddressFamily - the value to pass as the address family parameter to the socket() API in
order to open a socket for this protocol. This value also uniquely defines the structure of
Protocol addresses (SOCKADDRs) used by the protocol.

INT iMaxSockAddr - The maximum address length.

INT iMinSockAddr - The minimum address length.

INT iSocketType - The value to pass as the socket type parameter to the socket() API in order to
open a socket for this protocol.

INT iProtocol - The value to pass as the protocol parameter to the socket() API in order to open a
socket for this protocol.

BOOL bMultiple - A flag to indicate that this is one of two or more entries for a single protocol
which is capable of implementing multiple behaviors. An example of this is SPX which on
the receiving side can behave either as a message oriented or a stream oriented protocol.

BOOL bFirst - A flag to indicate that this is the prime or most frequently used entry for a
protocol which is capable of implementing multiple behaviors.

DWORD dwMessageSize - The maximum message size supported by the protocol. This is the
maximum size that can be sent from any of the host’s local interfaces. For protocols which
do not support message framing, the actual maximum that can be sent to a given address
may be less. The following special values are defined:

0 - the protocol is stream-oriented and hence the concept of message size is
not relevent.

0x1 - the maximum message size is dependent on the underlying network
MTU (maximum sized transmission unit) and hence cannot be known
until after a socket is bound. Applications should use getsockopt() to
retrieve the value of SO_MAX_MSG_SIZE after the socket has been
bound to a local address.

0xFFFFFFFF - the protocol is message-oriented, but there is no maximum
limit to the size of messages that may be transmitted.

LPTSTR lpProtocol - a pointer to a human-readable name identifying the protocol, for example
"SPX2".

DWORD dwNameSpaces - information on which name spaces can be found by the transport this
protocol is contained within. Value encoding is TBD.

Return Value If no error occurs, WSAEnumProtocols() returns the number of protocols to be
reported on. Otherwise a value of TBD is returned and a specific error code may be
retrieved by calling WSAGetLastError().

WSAEnumNetworkEvents 29

WSAEnumNetworkEvents()
Description Discover occurrences of network events for the indicated socket.

 #include <winsock2.h>

 int WSAAPI WSAEnumNetworkEvents (SOCKET s, WSAEVENT hEventObject,
LPWSANETWORKEVENT lpNetworkEvents, LPINT lpiCount);

s A descriptor identifying the socket.

hEventObject An optional handle identifying an associated event object to be reset.

lpNetworkEvents An array of WSANETWORKEVENT structs, each of which records
an occurred network event and the associated error code.

lpiCount The number of elements in the array. Upon returning, this parameter
indicates the actual number of elements in the array, or the minimum
number of elememts needed to retrieve all the network events if the
return value is WSAENOBUFS.

Remarks This function is used to discover which network events have occurred for the indicated
socket since the last invocation of this function. It is intended for use in conjunction
with WSAEventSelect(), which associates an event object with one or more network
events. The socket’s internal record of network events is copied to lpNetworkEvents,
whereafter the internal network events record is cleared. If hEventObject is non-null,
the indicated event object is also reset. The Winsock2 DLL guarantees that the
operations of copying the network event record, clearing it and resetting any associated
event object are atomic, such that the next occurrence of a nominated network event
will cause the event object to become set.

The following error codes may be returned along with the respective network event:
Event: FD_CONNECT
Error Code Meaning
WSAEADDRINUSE The specified address is already in use.

WSAEADDRNOTAVAIL The specified address is not available from the local
machine.

WSAEAFNOSUPPORT Addresses in the specified family cannot be used
with this socket.

WSAECONNREFUSED The attempt to connect was forcefully rejected.

WSAENETUNREACH The network can't be reached from this host at this
time.

WSAENOBUFS No buffer space is available. The socket cannot be
connected.

WSAETIMEDOUT Attempt to connect timed out without establishing a
connection

Event: FD_CLOSE
Error Code Meaning
WSAENETDOWN The network subsystem has failed.

WSAEnumNetworkEvents 30

WSAECONNRESET The connection was reset by the remote side.

WSAECONNABORTED The connection was aborted due to timeout or other
failure.

Event: FD_READ
Event: FD_WRITE
Event: FD_OOB
Event: FD_ACCEPT
Event: FD_QOS
Event: FD_GROUP_QOS
Error Code Meaning
WSAENETDOWN The network subsystem has failed.

Return Value The return value is 0 if the operation was successful. Otherwise the value
SOCKET_ERROR is returned, and a specific error number may be retrieved by calling
WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL Indicates that one of the specified parameters was
invalid

WSAEINPROGRESS A blocking Winsock call is in progress, or the
service provider is still processing a callback
function (see section Error: Reference source not
found).

WSAENOBUFS The supplied buffer is too small.

See Also WSAEventSelect()

WSAEventSelect 31

WSAEventSelect()
Description Specify an event object to be associated with the supplied set of FD_XXX network

events.

 #include <winsock2.h>

 int WSAAPI WSAEventSelect (SOCKET s, WSAEVENT hEventObject, long
lNetworkEvents);

s A descriptor identifying the socket.

hEventObject A handle identifying the event object to be associated with the
supplied set of FD_XXX network events.

lNetworkEvents A bitmask which specifies the combination of FD_XXX network
events in which the application has interest.

Remarks This function is used to specify an event object, hEventObject, to be associated with the
selected FD_XXX network events, lNetworkEvents. The socket for which an event
object is specified is identified by s. The event object is set when any of the nominated
network events occurr.

WSAEventSelect() operates very similarly to WSAAsyncSelect(), the difference being
in the actions taken when a nominated network event occurs. Whereas
WSAAsyncSelect() causes an application-specified Windows message to be posted,
WSAEventSelect() sets the associated event object and records the occurrence of this
event by setting the corresponding bit in an internal network event record. An
application can use WSAWaitForMultipleEvents() or WSAGetOverlappedResult()
to wait or poll on the event object, and use WSAEnumNetworkEvents() to retrieve the
contents of the internal network event record and thus determine which of the
nominated network events have occurred.

This function automatically sets socket s to non-blocking mode, regardless of the value
of lNetworkEvents. See ioctlsocket() about how to set the socket back to blocking
mode.

The lNetworkEvents parameter is constructed by or'ing any of the values specified in
the following list.

Value Meaning
FD_READ Want to receive notification of readiness for reading
FD_WRITE Want to receive notification of readiness for writing
FD_OOB Want to receive notification of the arrival of out-of-band

data
FD_ACCEPT Want to receive notification of incoming connections
FD_CONNECT Want to receive notification of completed connection
FD_CLOSE Want to receive notification of socket closure
FD_QOS Want to receive notification of socket Quality of Service

(QOS) changes
FD_GROUP_QOS Want to receive notification of socket group Quality of

Service (QOS) changes

WSAEventSelect 32

Issuing a WSAEventSelect() for a socket cancels any previous WSAAsyncSelect() or
WSAEventSelect() for the same socket and clears all bits in the internal network event
record. For example, to associate an event object with both reading and writing
network events, the application must call WSAEventSelect() with both FD_READ and
FD_WRITE, as follows:

rc = WSAEventSelect(s, hEventObject, FD_READ|FD_WRITE);

It is not possible to specify different event objects for different network events. The
following code will not work; the second call will cancel the effects of the first, and
only FD_WRITE network event will be associated with hEventObject2:

rc = WSAEventSelect(s, hEventObject1, FD_READ);
rc = WSAEventSelect(s, hEventObject2, FD_WRITE);

To cancel the association and selection of network events on a socket, lNetworkEvents
should be set to zero, in which case the hEventObject parameter will be ignored.

rc = WSAEventSelect(s, hEventObject, 0);

Closing a socket with closesocket() also cancels the association and selection of
network events specified in WSAEventSelect() for the socket. The application,
however, still needs to call WSACloseEvent() to explicitly close the event object and
free any resources.

Since an accept()'ed socket has the same properties as the listening socket used to
accept it, any WSAEventSelect() association and network events selection set for the
listening socket apply to the accepted socket. For example, if a listening socket has
WSAEventSelect() association of hEventOject with FD_ACCEPT, FD_READ, and
FD_WRITE, then any socket accepted on that listening socket will also have
FD_ACCEPT, FD_READ, and FD_WRITE network events associated with the same
hEventObject. If a different hEventObject or network events are desired, the
application should call WSAEventSelect(), passing the accepted socket and the desired
new information.2

Return Value The return value is 0 if the application's specification of the network events and the
associated event object was successful. Otherwise the value SOCKET_ERROR is
returned, and a specific error number may be retrieved by calling
WSAGetLastError().

Comments
As in the case of the select() and WSAAsyncSelect() functions, WSAEventSelect()
will frequently be used to determine when a data transfer operation (send() or recv())
can be issued with the expectation of immediate success. Nevertheless, a robust
application must be prepared for the possibility that the event object is set and it issues
a Winsock call which returns WSAEWOULDBLOCK immediately. For example, the
following sequence of operations is possible:

2Note that there is a timing window between the accept() call and the call to WSAEventSelect() to
change the network events or hEventObject. An application which desires a different hEventObject for
the listening and accept()'ed sockets should ask for only FD_ACCEPT network event on the listening
socket, then set appropriate network events after the accept(). Since FD_ACCEPT never happens to a
connected socket and FD_READ, FD_WRITE, FD_OOB, and FD_CLOSE never happen to listening
sockets, this will not impose difficulties.

WSAEventSelect 33

(i) data arrives on socket s; Winsock sets the WSAEventSelect event
object

(ii) application does some other processing
(iii) while processing, application issues an ioctlsocket(s, FIONREAD...)

and notices that there is data ready to be read
(iv) application issues a recv(s,...) to read the data
(v) application eventually waits on event object specified in

WSAEventSelect, which returns immediately indicating that data is
ready to read

(vi) application issues recv(s,...), which fails with the error
WSAEWOULDBLOCK.

Other sequences are possible.

Having successfully recorded the occurrence of the network event (by setting the
corresponding bit in the internal network event record) and signaled the associated
event object, no further actions are taken for that network event until the application
makes the function call which implicitly reenables the setting of that network event and
signaling of the associated event object.

Network Event Re-enabling function
FD_READ recv() or recvfrom()
FD_WRITE send() or sendto()
FD_OOB recv()
FD_ACCEPT accept() or WSAAccept() unless the error code returned is

WSATRY_AGAIN indicating that the condition function
returned CF_DEFER

FD_CONNECT NONE
FD_CLOSE NONE
FD_QOS getsockopt() with option SO_FLOWSPEC
FD_GROUP_QOS getsockopt() with option SO_GROUP_FLOWSPEC

Any call to the reenabling routine, even one which fails, results in reenabling of
recording and setting for the relevant network event and event object, respectively.

For FD_READ, FD_OOB, FD_ACCEPT, FD_QOS and FD_GROUP_QOS network
events, network event recording and event object setting are "level-triggered." This
means that if the reenabling routine is called and the relevant network condition is still
valid after the call, the network event is recorded and the associated event object is
set . This allows an application to be event-driven and not be concerned with the
amount of data that arrives at any one time. Consider the following sequence:

(i) transport provider receives 100 bytes of data on socket s and causes
Winsock2 DLL to record the FD_READ network event and set the
associated event object.

(ii) The application issues recv(s, buffptr, 50, 0) to read 50 bytes.
(iii) The transport provider causes WINSOCK DLL to record the

FD_READ network event and sets the associated event object again
since there is still data to be read.

With these semantics, an application need not read all available data in response to an
FD_READ network event --a single recv() in response to each FD_READ network
event is appropriate.

If a network event has already happened when the application calls WSAEventSelect()
or when the reenabling function is called, then a network event is recorded and the

WSAEventSelect 34

associated event object is set as appropriate. All the network events have persistence
beyond the occurrence of their respective events. For example, consider the following
sequence: 1) an application calls listen(), 2) a connect request is received but not yet
accepted, 3) the application calls WSAEventSelect() specifying that it is interested in
the FD_ACCEPT network event for the socket. Due to the persistence of network
events, Winsock records the FD_ACCEPT network event and sets the associated event
object immediately.

The FD_WRITE network event is handled slightly differently. An FD_WRITE
network event is recorded when a socket is first connected with connect() or accepted
with accept(), and then after a send() or sendto() fails with WSAEWOULDBLOCK
and buffer space becomes available. Therefore, an application can assume that sends
are possible starting from the first FD_WRITE network event settting and lasting until a
send returns WSAEWOULDBLOCK. After such a failure the application will find out
that sends are again possible when an FD_WRITE network event is recorded and the
associated event object is set .

The FD_OOB network event is used only when a socket is configured to receive out-of-
band data separately. If the socket is configured to receive out-of-band data in-line, the
out-of-band (expedited) data is treated as normal data and the application should
register an interest in, and will get, FD_READ network event, not FD_OOB network
event. An application may set or inspect the way in which out-of-band data is to be
handled by using setsockopt() or getsockopt() for the SO_OOBINLINE option.

The error code in an FD_CLOSE network event indicates whether the socket close was
graceful or abortive. If the error code is 0, then the close was graceful; if the error code
is WSAECONNRESET, then the socket's virtual circuit was reset. This only applies to
connection-oriented sockets such as SOCK_STREAM.

The FD_CLOSE network event is recorded when a close indication is received for the
virtual circuit corresponding to the socket. In TCP terms, this means that the
FD_CLOSE is recorded when the connection goes into the FIN WAIT or CLOSE
WAIT states. This results from the remote end performing a shutdown() on the send
side or a closesocket().

Please note Winsock will record ONLY an FD_CLOSE network event to indicate
closure of a virtual circuit. It will NOT record an FD_READ network event to indicate
this condition.

The FD_QOS or FD_GROUP_QOS network event is recorded when any field in the
flow spec associated with socket s or the socket group that s belongs to has changed,
respectively. Applications should use getsocketopt() with option SO_FLOWSPEC or
SO_GROUP_FLOWSPEC to get the current QOS for socket s or for the socket group s
belongs to, respectively.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL Indicates that one of the specified parameters was
invalid, or the specified socket is in an invalid state.

WSAEventSelect 35

WSAEINPROGRESS A blocking Winsock call is in progress, or the
service provider is still processing a callback
function (see section Error: Reference source not
found).

WSAENOTSOCK The descriptor is not a socket.

See Also WSACloseEvent(),WSACreateEvent(), WSAEnumNetworkEvents(),
WSAGetOverlappedResult(),WSAWaitForMultipleEvents().

WSARecv 36

WSARecv()
Description Receive data from a socket, possibly using overlapped I/O.

 #include <winsock2.h>

 int WSAAPI WSARecv (SOCKET s, LPVOID lpBuffer, DWORD
nNumberOfBytesToRecv, LPDWORD lpNumberOfBytesRecvd, LPINT lpFlags,
LPWSAOVERLAPPED lpOverlapped,
LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine);

s A descriptor identifying a connected socket.

lpBuffer A pointer to the buffer for the incoming data.

nNumberOfBytesToRecv The number of bytes to receive from the network.

lpNumberOfBytesRecvd A pointer to the number of bytes received by this call.

lpFlags A pointer to flags.

lpOverlapped A pointer to a WSAOVERLAPPED structure (ignored for
non-overlapped sockets).

lpCompletionRoutine A pointer to the completion routine called when the receive
operation has been completed (ignored for non-overlapped
sockets)..

Remarks This function is used on a connection-oriented socket specified by s. For overlapped
sockets it is used to post a buffer into which incoming data will be placed as it
becomes available. For non-overlapped sockets it behaves the same as the standard
recv() function except that the flags parameter is both an input and an output parameter.
It can also be used on connectionless sockets which have a stipulated default peer
address established via the connect() or WSAConnect() functions.

For byte stream style sockets (e.g., type SOCK_STREAM), incoming data is placed
into the buffer until the buffer is filled.
For message-oriented sockets (e.g., type SOCK_DGRAM), an incoming message is
placed into the supplied buffer, up to the size of the buffer supplied. If the message is
larger than the buffer supplied, the buffer is filled with the first part of the message.
The MSG_PARTIAL flag is set for the socket, if this feature is supported by the
underlying protocol, and subsequent receive operation(s) will retrive the rest of the
message. Otherwise, the excess data is lost, and WSARecv() returns the error
WSAEMSGSIZE.
If the socket is connection-oriented and the remote side has shut down the connection
gracefully, WSARecv() will fail with the error WSAEDISCON. If the connection has
been reset, a WSARecv() will fail with the error WSAECONNRESET.

Overlapped socket I/O:
This function may be called from within the completion routine of a previous
WSARead(), WSAReadFrom(), WSASend() or WSASendTo() function. In Win16
environments, this function may also be called from within interrupt context provided
that the XP1_INTERRUPT bit in the associated PROTOCOL_INFO struct is TRUE.

WSARecv 37

The lpOverlapped parameter much be valid for the duration of the overlapped
operation. The WSAOVERLAPPED structure has the following form:

typedef struct _WSAOVERLAPPED {
DWORD Internal; // reserved
DWORD InternalHigh; // reserved
DWORD Offset; // ignored
DWORD OffsetHigh; // ignored
WSAEVENT hEvent;

} WSAOVERLAPPED, LPWSAOVERLAPPED;

If the lpCompletionRoutine parameter is NULL, the hEvent field of lpOverlapped must
be a valid event object handle which is signaled when the overlapped operation
completes. An application can use WSAWaitForMultipleEvents() or
WSAGetOverlappedResult() to wait or poll on the event object.

If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the
application to pass context information to the completion routine.

In Win16 environments, the service provider may invoke the application’s completion
routine from within an interrupt context. Application developers should assume that
this will be the case and restrict any calls made from within the completion routine to
those that are safe for interrupt context.

In Win32 environments, completion functions are invoked following the usual rules for
overlapped procedure calls or APCs. Specifically, the calling thread must be in an
alertable wait (e.g., using WSAWaitForMultipleEvents()) in order for the completion
routine to be invoked.. If the calling thread is not in an alertable wait when the
overlapped operation has been completed, the system queues the completion routine
call until the thread enters an alterable wait. The prototype of the completion routine is
as follows:

VOID CALLBACK CompletionRoutine(DWORD dwError,
DWORD cbTransferred, LPWSAOVERLAPPED lpOverlapped);

CompletionRoutine is a placeholder for an application-defined or library-defined
function name. dwError specifies the completion status for the overlapped operation as
indicated by lpOverlapped. cbTransferred specifies the number of bytes received. This
function does not return a value.

Returning from this function allows invocation of another pending completion routine
for this socket. In Win32 environments, all waiting completion routines are called
before the alterable thread’s wait is satisfied with a return code of
WSA_IO_COMPLETION. The completion routines may be called in any order, not
necessarily in the same order the overlapped operations are completed. However, the
posted buffers are guaranteed to be filled in the same order they are supplied

Upon the completion of the overlapped operation, the lpNumberOfBytesRecvd
parameter is filled with the number of bytes received, and, for message-oriented
sockets, the MSG_PARTIAL bit is set in the lpFlags parameter if a partial message is
received. If a complete message is received, MSG_PARTIAL is cleared in lpFlags.

Return Value If no error occurs, WSARecv() returns 0. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling WSAGetLastError().

WSARecv 38

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The network subsystem has failed.

WSAENOTCONN The socket is not connected.

WSAENETRESET The connection must be reset because the service
provider dropped it.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not
stream style such as type SOCK_STREAM, out-of-
band data is not supported in the communication
domain associated with this socket, or the socket is
unidirectional and supports only send operations.

WSAESHUTDOWN The socket has been shutdown; it is not possible to
WSARecv() on a socket after shutdown() has been
invoked with how set to SD_RECEIVE or
SD_BOTH.

WSAEWOULDBLOCK Overlapped sockets: There are too many outstanding
overlapped I/O requests. Non-overlapped sockets:
The socket is marked as non-blocking and the
receive operation cannot be completed immediately.

WSAEMSGSIZE The message was too large to fit into the specified
buffer and was truncated.

WSAEINVAL The socket has not been bound with bind(), or the
socket is not created with the overlapped flag.

WSAECONNABORTED The virtual circuit was aborted due to timeout or
other failure.

WSAECONNRESET The virtual circuit was reset by the remote side.

WSAEDISCON The remote side gracefully close the connection.

See Also WSACloseEvent(),WSACreateEvent(), WSAGetOverlappedResult(), WSASocket(),
WSAWaitForMultipleEvents()

WSARecvFrom 39

WSARecvfrom()
Description Receive a datagram and store the source address, possibly using overlapped I/O.

 #include <winsock2.h>

int WSAAPI WSARecvfrom (SOCKET s, LPVOID lpBuffer, DWORD
nNumberOfBytesToRecv, LPDWORD lpNumberOfBytesRecvd, LPINT lpFlags,
LPVOID lpFrom, LPINT lpFromlen, LPWSAOVERLAPPED lpOverlapped,
LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine);

s A descriptor identifying a socket

lpBuffer A pointer to the buffer for the incoming data.

nNumberOfBytesToRecv The number of bytes to receive from the network.

lpNumberOfBytesRecvd A pointer to the number of bytes received by this call.

lpFlags A pointer to flags.

lpFrom An optional pointer to a buffer which will hold the source
address upon the completion of the overlapped operation.

lpFromlen An optional pointer to the size of the from buffer.

lpOverlapped A pointer to a WSAOVERLAPPED structure (ignored for
non-overlapped sockets)..

lpCompletionRoutine A pointer to the completion routine called when the receive
operation has been completed (ignored for non-overlapped
sockets)..

Remarks For overlapped sockets, this function is used to post a buffer into which incoming data
will be placed as it becomes available on a (possibly connected) socket. The data must
have already been received by the transport for non-overlapped sockets.

For connectionless socket types, the address from which the data originated is copied to
the buffer pointed by lpFrom. The value pointed to by lpFromlen is initialized to the
size of this buffer, and is modified on return to indicate the actual size of the address
stored there. The lpFrom and lpFromlen parameters are ignored for connection-oriented
sockets.

For byte stream style sockets (e.g., type SOCK_STREAM), incoming data is placed
into the buffer until the buffer is filled. For message-oriented sockets, an incoming
message is placed into the supplied buffer, up to the size of the buffer supplied. If the
message is larger than the buffer supplied, the buffer is filled with the first part of the
message. The MSG_PARTIAL flag is set for the socket, if this feature is supported by
the underlying protocol, and subsequent receive operation(s) will retrive the rest of the
message. Otherwise, the excess data is lost, and WSARecvfrom() returns the error
code WSAEMSGSIZE.

If the socket is connection-oriented and the remote side has shut down the connection
gracefully, a WSARecvfrom() will fail with the error WSAEDISCON. If the

WSARecvFrom 40

connection has been reset WSARecvfrom() will fail with the error
WSAECONNRESET.

Overlapped socket I/O:
This function may be called from within the completion routine of a previous
WSARead(), WSAReadFrom(), WSASend() or WSASendTo() function. In Win16
environments, this function may also be called from within interrupt context provided
that the XP1_INTERRUPT bit in tthe associated PROTOCOL_INFO struct is TRUE.

The lpOverlapped parameter much be valid for the duration of the overlapped
operation. The WSAOVERLAPPED structure has the following form:

typedef struct _WSAOVERLAPPED {
DWORD Internal; // reserved
DWORD InternalHigh; // reserved
DWORD Offset; // ignored
DWORD OffsetHigh; // ignored
WSAEVENT hEvent;

} WSAOVERLAPPED, LPWSAOVERLAPPED;

If the lpCompletionRoutine parameter is NULL, the hEvent field of lpOverlapped must
be an event object handle which is signaled when the overlapped operation completes.
An application can use WSAWaitForMultipleEvents() or
WSAGetOverlappedResult() to wait or poll on the event object.

If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the
application to pass context information to the completion routine.

In Win16 environments, the service provider may invoke the application’s completion
routine from within an interrupt context. Application developers should assume that
this will be the case and restrict any calls made from within the completion routine to
those that are safe for interrupt context.

In Win32 environments, completion functions are invoked following the usual rules for
asynchronous procedure calls or APCs. Specifically, the calling thread must be in an
alertable wait (e.g., using WSAWaitForMultipleEvents()) in order for the completion
routine to be invoked.. If the calling thread is not in an alertable wait when the
overlapped operation has been completed, the system queues the completion routine
call until the thread enters an alterable wait. The prototype of the completion routine is
as follows:

VOID CALLBACK CompletionRoutine(DWORD dwError,
DWORD cbTransferred, LPWSAOVERLAPPED lpOverlapped);

CompletionRoutine is a placeholder for an application-defined or library-defined
function name. dwError specifies the completion status for the overlapped operation as
indicated by lpOverlapped. cbTransferred specifies the number of bytes received. This
function does not return a value.

Returning from this function allows invocation of another pending completion routine
for this socket. In Win32 environments, all waiting completion routines are called
before the alterable thread’s wait is satisfied with a return code of
WSA_IO_COMPLETION. The completion routines may be called in any order, not
necessarily in the same order the overlapped operations are completed. However, the
posted buffers are guaranteed to be filled in the same order they are supplied

WSARecvFrom 41

Upon the completion of the overlapped operation, the lpNumberOfBytesRecvd
parameter is filled with the number of bytes received, and, for message-oriented
sockets, the MSG_PARTIAL bit is set in the lpFlags parameter if a partial message is
received. If a complete message is received, MSG_PARTIAL is cleared in lpFlags.

Return Value If no error occurs, WSARecvfrom() returns 0. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code may be retrieved by calling
WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The lpFromlen argument was invalid: the lpFrom
buffer was too small to accommodate the peer
address.

WSAEINVAL The socket has not been bound with bind(), or the
socket is not created with the overlapped flag.

WSAENETRESET The connection must be reset because the Winsock
provider dropped it.

WSAENOTCONN The socket is not connected (connection-oriented
sockets only).

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not
stream style such as type SOCK_STREAM, out-of-
band data is not supported in the communication
domain associated with this socket, or the socket is
unidirectional and supports only send operations.

WSAESHUTDOWN The socket has been shutdown; it is not possible to
WSARecvfrom() on a socket after shutdown() has
been invoked with how set to SD_RECEIVE or
SD_BOTH.

WSAEWOULDBLOCK Overlapped sockets: There are too many outstanding
overlapped I/O requests. . Non-overlapped sockets:
The socket is marked as non-blocking and the
receive operation cannot be completed immediately.

WSAEMSGSIZE The message was too large to fit into the specified
buffer and was truncated.

WSAECONNABORTED The virtual circuit was aborted due to timeout or
other failure.

WSAECONNRESET The virtual circuit was reset by the remote side.

WSAEDISCON The remote side gracefully close the connection.

WSARecvFrom 42

See Also WSACloseEvent(),WSACreateEvent(), WSAGetOverlappedResult(), WSASocket(),
WSAWaitForMultipleEvents()

WSASend 43

WSASend()
Description Send data on a connected socket using overlapped I/O.

 #include <winsock2.h>

int WSAAPI WSASend (SOCKET s, LPVOID lpBuffer, DWORD
nNumberOfBytesToSend, LPDWORD lpNumberOfBytesSent, int iFlags,
LPWSAOVERLAPPED lpOverlapped,
LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine);

s A descriptor identifying a connected socket which was
created using WSASocket() with flag
WSA_FLAG_OVERLAPPED.

lpBuffer A pointer to the buffer for the outgoing data.

nNumberOfBytesToSend The number of bytes to send to the network.

lpNumberOfBytesSent A pointer to the number of bytes sent by this call.

iFlags Flags.

lpOverlapped A pointer to a WSAOVERLAPPED structure.

lpCompletionRoutine A pointer to the completion routine called when the send
operation has been.

Remarks WSASend() is used to write outgoing data on a connected socket asynchronously. For
message-oriented sockets, care must be taken not to exceed the maximum message size
of the underlying provider, which can be obtained by getting the value of socket option
SO_MAX_MSG_SIZE. If the data is too long to pass atomically through the
underlying protocol the error WSAEMSGSIZE is returned, and no data is transmitted.

Note that the successful completion of a WSASend() does not indicate that the data was
successfully delivered. Upon completion of the overlapped operation, the value pointed
to by the lpNumberOfBytesSent parameter is updated with the number of bytes sent.

This function may be called from within the completion routine of a previous
WSARead(), WSAReadFrom(), WSASend() or WSASendTo() function. In Win16
environments, this function may also be called from within interrupt context provided
that the XP1_INTERRUPT bit in the socket’s PROTOCOL_INFO struct is TRUE.

The lpOverlapped parameter much be valid for the duration of the overlapped
operation. The WSAOVERLAPPED structure has the following form:

typedef struct _WSAOVERLAPPED {
DWORD Internal; // reserved
DWORD InternalHigh; // reserved
DWORD Offset; // ignored
DWORD OffsetHigh; // ignored
WSAEVENT hEvent;

} WSAOVERLAPPED, LPWSAOVERLAPPED;

WSASend 44

If the lpCompletionRoutine parameter is NULL, the hEvent field of lpOverlapped must
be a valid event object handle which is signaled when the overlapped operation
completes. An application can use WSAWaitForMultipleEvents() or
WSAGetOverlappedResult() to wait or poll on the event object.

If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the
application to pass context information to the completion routine.

In Win16 environments, the service provider may invoke the application’s completion
routine from within an interrupt context. Application developers should assume that
this will be the case and restrict any calls made from within the completion routine to
those that are safe for interrupt context.

In Win32 environments, completion functions are invoked following the usual rules for
asynchronous procedure calls or APCs. Specifically, the calling thread must be in an
alertable wait (e.g., using WSAWaitForMultipleEvents()) in order for the completion
routine to be invoked.. If the calling thread is not in an alertable wait when the
overlapped operation has been completed, the system queues the completion routine
call until the thread enters an alterable wait. The prototype of the completion routine is
as follows:

VOID CALLBACK CompletionRoutine(DWORD dwError,
DWORD cbTransferred, LPWSAOVERLAPPED lpOverlapped);

CompletionRoutine is a placeholder for an application-defined or library-defined
function name. dwError specifies the completion status for the overlapped operation as
indicated by lpOverlapped. cbTransferred specifies the number of bytes sent. This
function does not return a value.

Returning from this function allows invocation of another pending completion routine
for this socket. In Win32 environments, all waiting completion routines are called
before the alterable thread’s wait is satisfied with a return code of
WSA_IO_COMPLETION. The completion routines may be called in any order, not
necessarily in the same order the overlapped operations are completed. However, the
posted buffers are guaranteed to be sent in the same order they are supplied

Flags may be used to influence the behavior of the function invocation beyond the
options specified for the associated socket. That is, the semantics of this function are
determined by the socket options and the flags parameter. The latter is constructed by
or-ing any of the following values:

Value Meaning
MSG_DONTROUTE

Specifies that the data should not be subject to routing. A Winsock
service provider may choose to ignore this flag; see also the
discussion of the SO_DONTROUTE option in section Error:
Reference source not found.

MSG_PARTIAL Specifies that lpBuffer only contains a partial message. Note that this
flag will be ignored by transports which do not support partial
message transmissions.

Return Value If no error occurs, WSASend() returns 0. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling WSAGetLastError().

WSASend 45

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The network subsystem has failed.

WSAEACCES The requested address is a broadcast address, but the
appropriate flag was not set.

WSAEFAULT The lpBuffer argument is not in a valid part of the
user address space.

WSAENETRESET The connection must be reset because the Winsock
provider dropped it.

WSAENOBUFS The Winsock provider reports a buffer deadlock.

WSAENOTCONN The socket is not connected.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not
stream style such as type SOCK_STREAM, out-of-
band data is not supported in the communication
domain associated with this socket, or the socket is
unidirectional and supports only receive operations.

WSAESHUTDOWN The socket has been shutdown; it is not possible to
WSASend() on a socket after shutdown() has been
invoked with how set to SD_SEND or SD_BOTH.

WSAEWOULDBLOCK There are too many outstanding overlapped I/O
requests.

WSAEMSGSIZE The socket is message-oriented, and the message is
larger than the maximum supported by the
underlying transport.

WSAEINVAL The socket has not been bound with bind(), or the
socket is not created with the overlapped flag.

WSAECONNABORTED The virtual circuit was aborted due to timeout or
other failure.

WSAECONNRESET The virtual circuit was reset by the remote side.

See Also WSACloseEvent(),WSACreateEvent(), WSAGetOverlappedResult(), WSASocket(),
WSAWaitForMultipleEvents()

WSASendto 46

WSASendto()
Description Send data to a specific destination using overlapped I/O.

 #include <winsock2.h>

int WSAAPI WSASendto (SOCKET s, LPVOID lpBuffer, DWORD
nNumberOfBytesToSend, LPDWORD lpNumberOfBytesSent, int iFlags, LPVOID
lpTo, int iTolen, LPWSAOVERLAPPED lpOverlapped,
LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine);

s A descriptor identifying a connected socket which was
created using WSASocket() with flag
WSA_FLAG_OVERLAPPED.

lpBuffer A pointer to the buffer for the outgoing data.

nNumberOfBytesToSend The number of bytes to send to the network.

lpNumberOfBytesSent A pointer to the number of bytes sent by this call.

iFlags Flags.

lpTo An optional pointer to the address of the target socket.

iTolen The size of the address in lpTo.

lpOverlapped A pointer to a WSAOVERLAPPED structure.

lpCompletionRoutine A pointer to the completion routine called when the send
operation has been completed.

Remarks WSASendto() is used to write outgoing data on a socket asynchronously. For message-
oriented sockets, care must be taken not to exceed the maximum message size of the
underlying transport, which can be obtained by getting the value of socket option
SO_MAX_MSG_SIZE. If the data is too long to pass atomically through the
underlying protocol the error WSAEMSGSIZE is returned, and no data is transmitted.

Note that the successful completion of a WSASendto() does not indicate that the data
was successfully delivered. Upon completion of the overlapped operation, the value
pointed to by the lpNumberOfBytesSent parameter is updated with the number of bytes
sent.

WSASendto() is normally used on a connectionless socket to send a datagram to a
specific peer socket identified by the lpTo parameter. On a connection-oriented socket,
the lpTo and iTolen parameters are ignored; in this case the WSASendto() is equivalent
to WSASend().

This function may be called from within the completion routine of a previous
WSARead(), WSAReadFrom(), WSASend() or WSASendTo() function. In Win16
environments, this function may also be called from within interrupt context provided
that the XP1_INTERRUPT bit in the socket’s PROTOCOL_INFO struct is TRUE.

The lpOverlapped parameter much be valid for the duration of the overlapped
operation. The WSAOVERLAPPED structure has the following form:

WSASendto 47

typedef struct _WSAOVERLAPPED {
DWORD Internal; // reserved
DWORD InternalHigh; // reserved
DWORD Offset; // ignored
DWORD OffsetHigh; // ignored
WSAEVENT hEvent;

} WSAOVERLAPPED, LPWSAOVERLAPPED;

If the lpCompletionRoutine parameter is NULL, the hEvent field of lpOverlapped must
be an event object handle which is signaled when the overlapped operation completes.
An application can use WSAWaitForMultipleEvents() or
WSAGetOverlappedResult() to wait or poll on the event object.

If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the
application to pass context information to the completion routine.

In Win16 environments, the service provider may invoke the application’s completion
routine from within an interrupt context. Application developers should assume that
this will be the case and restrict any calls made from within the completion routine to
those that are safe for interrupt context.

In Win32 environments, completion functions are invoked following the usual rules for
asynchronous procedure calls or APCs. Specifically, the calling thread must be in an
alertable wait (e.g., using WSAWaitForMultipleEvents()) in order for the completion
routine to be invoked.. If the calling thread is not in an alertable wait when the
overlapped operation has been completed, the system queues the completion routine
call until the thread enters an alterable wait. The prototype of the completion routine is
as follows:

VOID CALLBACK CompletionRoutine(DWORD dwError,
DWORD cbTransferred, LPWSAOVERLAPPED lpOverlapped);

CompletionRoutine is a placeholder for an application-defined or library-defined
function name. dwError specifies the completion status for the overlapped operation as
indicated by lpOverlapped. cbTransferred specifies the number of bytes sent. This
function does not return a value.

Returning from this function allows invocation of another pending completion routine
for this socket. In Win32 environments, all waiting completion routines are called
before the alterable thread’s wait is satisfied with a return code of
WSA_IO_COMPLETION. The completion routines may be called in any order, not
necessarily in the same order the overlapped operations are completed. However, the
posted buffers are guaranteed to be sent in the same order they are supplied

Flags may be used to influence the behavior of the function invocation beyond the
options specified for the associated socket. That is, the semantics of this function are
determined by the socket options and the flags parameter. The latter is constructed by
or-ing any of the following values:

Value Meaning
MSG_DONTROUTE

Specifies that the data should not be subject to routing. A WINSOCK
service provider may choose to ignore this flag; see also the
discussion of the SO_DONTROUTE option in section Error:
Reference source not found.

WSASendto 48

MSG_PARTIAL Specifies that lpBuffer only contains a partial message. Note that this
flag will be ignored by transports which do not support partial
message transmissions.

Return Value If no error occurs, WSASendto() returns 0. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The network subsystem has failed.

WSAEACCES The requested address is a broadcast address, but the
appropriate flag was not set.

WSAEFAULT The lpBuffer or lpTo parameters are not part of the
user address space, or the lpTo argument is too
small.

WSAENETRESET The connection must be reset because the Winsock
provider dropped it.

WSAENOBUFS The Winsock provider reports a buffer deadlock.

WSAENOTCONN The socket is not connected (connection-oriented
sockets only)

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not
stream style such as type SOCK_STREAM, out-of-
band data is not supported in the communication
domain associated with this socket, or the socket is
unidirectional and supports only receive operations.

WSAESHUTDOWN The socket has been shutdown; it is not possible to
WSASendto() on a socket after shutdown() has
been invoked with how set to SD_SEND or
SD_BOTH.

WSAEWOULDBLOCK There are too many outstanding overlapped I/O
requests.

WSAEMSGSIZE The socket is message-oriented, and the message is
larger than the maximum supported by the
underlying transport.

WSAEINVAL The socket has not been bound with bind(), or the
socket is not created with the overlapped flag.

WSAECONNABORTED The virtual circuit was aborted due to timeout or
other failure.

WSAECONNRESET The virtual circuit was reset by the remote side.

WSASendto 49

WSAEADDRNOTAVAIL The specified address is not available from the local
machine.

WSAEAFNOSUPPORT Addresses in the specified family cannot be used
with this socket.

WSAEDESTADDRREQ A destination address is required.

WSAENETUNREACH The network can't be reached from this host at this
time.

See Also WSACloseEvent(),WSACreateEvent(), WSAGetOverlappedResult(), WSASocket(),
WSAWaitForMultipleEvents()

WSASocket 50

WSASocket()
Description Create a socket which is bound to a specific transport service provider.

{ May be revised to use PROTOCOL_INFO as an input param in place of af, type, protocol parameters}

 #include <winsock2.h>

 SOCKET WSAAPI WSASocket (int af, int type, int protocol, int iProviderID, int
iFlags);

af An address family specification.

type A type specification for the new socket.

protocol A particular protocol to be used with the socket, or 0 if the caller does
not wish to specify a protocol.

iProviderID The identifier of the service provider to be selected.

iFlags The socket attribute specification.

Remarks WSASocket() causes a socket descriptor and any related resources to be allocated and
bound to the transport service provider specified by iProviderID. The provider IDs of
service providers can be obtained by using WSAEnumProviders(). If iProviderID is
set to be -1, this indicates to the Winsock DLL that it should determine for itself which
service provider to use based on the supplied af, type, and protocol parameters.

If protocol is not specified (i.e., equal to zero), the default for the specified socket type
is used. However, the address family may be given as AF_UNSPEC (unspecified), in
which case the protocol parameter must be specified. The protocol number to use is
particular to the "communication domain'' in which communication is to take place.

The iFlags parameter may be used to specify the attributes of the socket by or-ing any
of the following Flags:

Flag Meaning
WSA_FLAG_OVERLAPPED

This flag causes an overlapped socket to be created. Overlapped
sockets must utilize WSASend(), WSASendto(), WSARecv(),
WSARecvfrom() for I/O operations, and allows multiple of these to
be initiated and in progress simultaneously. Overlapped sockets are
always non-blocking.

Connection-oriented sockets such as SOCK_STREAM provide full-duplex connections,
and must be in a connected state before any data may be sent or received on it. A
connection to another socket is created with a connect() call. Once connected, data
may be transferred using send()/WSASend() and recv()/WSARecv() calls. When a
session has been completed, a closesocket() must be performed.

The communications protocols used to implement a reliable, connection-oriented socket
ensure that data is not lost or duplicated. If data for which the peer protocol has buffer
space cannot be successfully transmitted within a reasonable length of time, the
connection is considered broken and subsequent calls will fail with the error code set to
WSAETIMEDOUT.

WSASocket 51

Connectionless, message-oriented sockets allow sending and receiving of datagrams to
and from arbitrary peers using sendto()/WSASendto() and
recvfrom()/WSARecvFrom(). If such a socket is connect()ed to a specific peer,
datagrams may be send to that peer using send()/WSASend() and may be received from
(only) this peer using recv()/WSARecv().

Return Value If no error occurs, WSASocket() returns a descriptor referencing the new socket.
Otherwise, a value of INVALID_SOCKET is returned, and a specific error code may be
retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before
using this API.

WSAENETDOWN The network subsystem has failed.

WSAEAFNOSUPPORT The specified address family is not supported.

WSAEINPROGRESS A blocking Winsock call is in progress, or the
service provider is still processing a callback
function (see section Error: Reference source not
found).

WSAEMFILE No more socket descriptors are available.

WSAENOBUFS No buffer space is available. The socket cannot be
created.

WSAEPROTONOSUPPORT The specified protocol is not supported.

WSAEPROTOTYPE The specified protocol is the wrong type for this
socket.

WSAESOCKTNOSUPPORT The specified socket type is not supported in this
address family.

See Also accept(), bind(), connect(), getsockname(), getsockopt(), setsockopt(), listen(),
recv(), recvfrom(), select(), send(), sendto(), shutdown(), ioctlsocket().

WSACreateEvent 52

WSACreateEvent()
Description Creates a new event object.

#include <winsock2.h>

WSAEVENT WSAAPI WSACreateEvent(VOID);

Remarks The event object created by this function is manual reset, with an initial state of
nonsignaled. If a Win32 application desires auto reset events, it may call the native
CreateEvent() Win32 API directly.

The Win32 implementation of this function is:

#define WSACreateEvent() \
CreateEvent(NULL, FALSE, FALSE, NULL);

Return Value If the function succeeds, the return value is the handle of the event object.

If the function fails, the return value is WSA_INVALID_EVENT. To get extended
error information, call WSAGetLastError().

Error Codes ERROR_NOT_ENOUGH_MEMORY Not enough free memory available to create the
event object.

See Also WSACloseEvent().

WSACloseEvent 53

WSACloseEvent()
Description Closes an open event object handle.

#include <winsock2.h>

BOOL WSAAPI WSACloseEvent(WSAEVENT hEvent);

hEvent Identifies an open event object handle.

Remarks The Win32 implementation of this function is:

#define WSACloseEvent(h) \
CloseHandle(h)

Return Value If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
WSAGetLastError().

Error Codes ERROR_INVALID_HANDLE hEvent is not a valid event object handle.

See Also WSACreateEvent().

WSAWaitForMultipleEvents 54

WSAWaitForMultipleEvents()
Description Returns either when any one or when all of the specified event objects are in the

signaled state, or when the time-out interval elapses.

#include <winsock2.h>

DWORD WSAAPI WSAWaitForMultipleEvents(DWORD cEvents, const
WSAEVENT FAR * lphEvents, BOOL fWaitAll, DWORD dwTimeout, BOOL
fAlertable);

cEvents Specifies the number of event object handles in the array pointed to
by lphEvents. The maximum number of event object handles is
WSA_MAXIMUM_WAIT_EVENTS.

lphEvents Points to an array of event object handles.

fWaitAll Specifies the wait type. If TRUE, the function returns when all event
objects in the lphEvents array are signaled at the same time. If
FALSE, the function returns when any one of the event objects is
signaled. In the latter case, the return value indicates the event object
whose state caused the function to return.

dwTimeout Specifies the time-out interval, in milliseconds. The function returns if
the interval elapses, even if conditions specified by the fWaitAll
parameter are not satisfied. If dwTimeout is zero, the function tests the
state of the specified event objects and returns immediately. If
dwTimeout is WSA_INFINITE, the function's time-out interval never
elapses.

fAlertable Specifies whether the function returns when the system queues an I/O
completion routine for execution by the calling thread. If TRUE, the
function returns and the completion routine is executed. If FALSE,
the function does not return and the completion routine is not
executed. Note that this parameter is ignored in Win16.

Remarks In nonpreemptive environments (Win16), the blocking hook is called if this function
must wait for the event(s) to become signaled. In preemptive environments (Win32),
the blocking hook is never called from within this function.

The Win32 implementation for this function is:

#define WSAWaitForMultipleEvents(c, p, w, t, a) \
WaitForMultipleEventsEx((c), (p), (w), (t), (a))

Return Value If the function succeeds, the return value indicates the event object that caused the
function to return.

If the function fails, the return value is WSA_WAIT_FAILED. To get extended error
information, call WSAGetLastError().

The return value upon success is one of the following values:

Value Meaning
WSA_WAIT_OBJECT_0
to

WSAWaitForMultipleEvents 55

 (WSA_WAIT_OBJECT_0
+ cObjects - 1) If fWaitAll is TRUE, the return value indicates that the state of all
specified event objects is signaled. If fWaitAll is FALSE, the return value minus
WAIT_OBJECT_0 indicates the lphEvents array index of the object that satisfied the
wait.

WAIT_IO_COMPLETION (Win32 only) One or more I/O completion routines are
queued for execution.

WSA_WAIT_TIMEOUT The time-out interval elapsed and the conditions specified by
the fWaitAll parameter are not satisfied.

Error Codes ERROR_NOT_ENOUGH_MEMORY Not enough free memory available to complete
the operation

ERROR_INVALID_HANDLE One or more of the values in the lphEvents array is
not a valid event object handle.

ERROR_INVALID_PARAMETER The cEvents parameter does not contain a valid
handle count.

See Also WSACreateEvent(), WSASetEvent().

WSASetEvent 56

WSASetEvent()
Description Sets the state of the specified event object to signaled.

#include <winsock2.h>

BOOL WSAAPI WSASetEvent(WSAEVENT hEvent);

hEvent Identifies an open event object handle.

Remarks The Win32 implementation of this function is:

#define WSASetEvent(h) \
SetEvent(h)

Return Value If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
WSAGetLastError().

Error Codes ERROR_INVALID_HANDLE hEvent is not a valid event object handle.

See Also WSACreateEvent(), WSAResetEvent().

WSAResetEvent 57

WSAResetEvent()
Description Resets the state of the specified event object to nonsignaled.

#include <winsock2.h>

BOOL WSAAPI WSAResetEvent(WSAEVENT hEvent);

hEvent Identifies an open event object handle.

Remarks The Win32 implementation of this function is:

#define WSAResetEvent(h)
ResetEvent(h)

Return Value If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
WSAGetLastError().

Error Codes ERROR_INVALID_HANDLE hEvent is not a valid event object handle.

See Also WSACreateEvent(), WSASetEvent().

WSAGetOverlappedResult 58

WSAGetOverlappedResult()
Description Returns the results of an overlapped operation on the specified socket.

#include <winsock2.h>

BOOL WSAAPI WSAGetOverlappedResult(SOCKET sock,
LPWSAOVERLAPPED lpOverlapped, LPDWORD lpcbTransfer, BOOL fWait,
LPDWORD lpdwFlags);

sock Identifies the socket. This is the same socket that was specified when
the overlapped operation was started by a call to WSARecv(),
WSARecvFrom(), WSASend(), WSASendTo(), WSAConnect(), or
WSAAccept().

lpOverlapped Points to a WSAOVERLAPPED structure that was specified when the
overlapped operation was started.

lpcbTransfer Points to a 32-bit variable that receives the number of bytes that were
actually transferred by a send or receive operation.

fWait Specifies whether the function should wait for the pending overlapped
operation to complete. If TRUE, the function does not return until the
operation has been completed. If FALSE and the operation is still
pending, the function returns FALSE and the WSAGetLastError
function returns WSA_IO_INCOMPLETE.

lpdwFlags Points to a 32-bit variable that will receive one or more flags that
supplement the completion status. For example, if partial data is
received over a message-oriented transport, this is indicated here.

Remarks The results reported by the WSAGetOverlappedResult() function are those of the
specified socket's last overlapped operation to which the specified WSAOVERLAPPED
structure was provided, and for which the operation's results were pending. A pending
operation is indicated when the function that started the operation returns FALSE, and
the WSAGetLastError() function returns WSA_IO_PENDING. When an I/O
operation is pending, the function that started the operation resets the hEvent member of
the WSAOVERLAPPED structure to the nonsignaled state. Then when the pending
operation has been completed, the system sets the event object to the signaled state.

If the fWait parameter is TRUE, WSAGetOverlappedResult() determines whether the
pending operation has been completed by waiting for the event object to be in the
signaled state.

Return Value If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
WSAGetLastError().

Error Codes ERROR_INVALID_HANDLE One of the handles involved with this operation is
invalid. Either sock is not a valid socket handle, or
the hEvent field of the WSAOVERLAPPED
structure does not contain a valid event object
handle.

ERROR_INVALID_PARAMETER One of the parameters is unacceptable.

WSAGetOverlappedResult 59

ERROR_IO_INCOMPLETE fWait is FALSE and the I/O operation has not yet
completed.

See Also WSACreateEvent(), WSAWaitForMultipleEvents(), WSARecv(),
WSARecvFrom(), WSASend(), WSASendTo(), WSAConnect(), WSAAccept().

WSAGetQoSByName 60

WSAGetQoSByName()
Description Initializes the QoS based on a template.

#include <winsock2.h>

BOOL WSAAPI WSAGetQoSByName(SOCKET sock, LPWSABUF lpQosName,
LPQOS lpQoS);

sock Identifies the socket. This is the same socket that was specified when
the overlapped operation was started by a call to WSARecv(),
WSARecvFrom(), WSASend(), WSASendTo(), WSAConnect(), or
WSAAccept().

lpQosName Specifies the QoS template name

Remarks Initializes the QoS structure based on a named template.

Return Value If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
WSAGetLastError().

Error Codes
ERROR_INVALID_PARAMETER The specified QoS template is invalid.

See Also WSAConnect(), WSAAccept(), getsockopt(), select(), WSAAsyncSelect().

Winsock2.h 61

Winsock 2.0 Header File - Winsock2.h
/* WINSOCK2.H--definitions to be used with the WINSOCK2.DLL and WINSOCK2 applications.
 *
 * This header file corresponds to version 2.0 of the Winsock specification.
 *
 * This file includes parts which are Copyright (c) 1982-1986 Regents
 * of the University of California. All rights reserved. The
 * Berkeley Software License Agreement specifies the terms and
 * conditions for redistribution.
 */

#ifdef WIN32

#define WSATASK HANDLE

#else //WIN16

#define WSATASK HTASK

#endif // WIN32

typedef enum
{

GuaranteedService,
BestEffortService

} GUARANTEE;
typedef struct _flowparams
{

int64 AverageBandwith;// In Bytes/sec
int64 PeakBandwidth; // In Bytes/sec
int64 BurstLength; // In microseconds
int64 Latency; // In microseconds
int64 DelayVariation;// In microseconds
GUARANTEE levelOfGuarantee;// Guaranteed or

// Best Effort
int32 CostOfCall; // Reserved for future

// use, must be set to 0
int32 ProviderId; // Provider Identifier
int32 SizePSP; // Length of provider

// specific parameters
 UCHAR ProviderSpecificParams[1];// provider specific

// parameters
} FLOWPARAMS;
typedef struct _QualityOfService
{
 FLOWPARAMS ForwardFP; // Caller(Initiator) to callee

FLOWPARAMS BackwardFP; // Callee to caller
} QOS, FAR * LPQOS;
typedef int (CALLBACK * LPCONDITIONPROC) (const struct sockaddr FAR * CallerName,
 int CallerNamelen,
 LPWSABUF lpCallerData,
 LPQOS lpSFlowspec,
 const struct sockaddr FAR * CalleeName
 int CalleeNamelen,
 LPWSABUF lpCalleeData,
 GROUP FAR * g,
 DWORD dwCallbackData);

typedef stuct _WSANETWORKEVENTS {
 long lNetworkEvent,
 int iErrorCode
} WSANETWORKEVENTS, LPWSANETWORKEVENTS;

#define WSAEDISCON ????

	Introduction
	Summary of Additions and Changes
	Support for multiple transports simultaneously
	Shared Sockets
	Overlapped I/O and Event Objects
	Socket Groups
	Enhanced Functionality During Connection Setup
	Quality of Service
	The Flow Spec Structures

	New Socket Option Summary

	New API Functions
	WSAAccept()
	WSAAsyncSelect()
	WSAConnect()
	WSADuplicateSocket()
	WSAEnumProtocols()
	WSAEnumNetworkEvents()
	WSAEventSelect()
	WSARecv()
	WSARecvfrom()
	WSASend()
	WSASendto()
	WSASocket()
	WSACreateEvent()
	WSACloseEvent()
	WSAWaitForMultipleEvents()
	WSASetEvent()
	WSAResetEvent()
	WSAGetOverlappedResult()
	WSAGetQoSByName()

	Winsock 2.0 Header File - Winsock2.h

